[1]
C.H. Lin, W.N. Wang, L.M. Fu, Integrated microfluidic chip for rapid DNA digestion and time-resolved capillary electrophoresis analysis. Biomicrofluidics, 6 (2012) 012818.
DOI: 10.1063/1.3654950
Google Scholar
[2]
L.M. Fu., W.J. Ju, Y.N. Wang, R.J. Yang, Rapid prototyping of glass-based microfluidic chips utilizing two-pass defocused CO2 Laser beam method. Microfluid. Nanofluid. 14 (2013) 479-487.
DOI: 10.1007/s10404-012-1066-8
Google Scholar
[3]
L.M. Fu, W.J. Ju, R.J. Yang, Y.N. Wang, Integrated microfluidic array chip and LED photometer system for sulfur dioxide and methanol concentration detection. Chem. Eng. J. 243 (2014) 421-427.
DOI: 10.1016/j.cej.2013.12.096
Google Scholar
[4]
L.M. Fu, Y.N. Wang, C.C. Liu, An integrated microfluidic chip for formaldehyde analysis in Chinese herbs. Chem. Eng. J. 244 (2014) 422-428.
DOI: 10.1016/j.cej.2014.01.085
Google Scholar
[5]
L.M. Fu, T.F. Hong, C.Y. Wen, C.H. Lin, C.H. Tsai, Electrokinetic instability effects in microchannels with and without nanofilm coatings. Electrophoresis. 29 (2008) 4871-4879.
DOI: 10.1002/elps.200800455
Google Scholar
[6]
M.T. Ke, J.H. Zhong, C.Y. Lee, Electromagnetically-actuated reciprocating pump for high-flow-rate microfluidic applications. Sensors. 12 (2012) 13075-13087.
DOI: 10.3390/s121013075
Google Scholar
[7]
C.Y. Lee, C.Y. Wen, H.H. Hou, R.J. Yang, C.H. Tsai, L.M. Fu, Design and packaging of MEMS-based flow-rate and flow-direction microsensor. Microfluid. Nanofluid. 6 (2009) 363-371.
DOI: 10.1007/s10404-008-0381-6
Google Scholar
[8]
L.M. Fu, W.J. Ju, C.H. Tsai, H.H. Hou, Y.N. Wang, R.J. Yang, Chaotic vortex micromixer utilizing gas pressure driving force. Chem. Eng. J. 214 (2013) 1-7.
DOI: 10.1016/j.cej.2012.10.032
Google Scholar
[9]
L.M. Fu, W.C. Fang, H.H. Hou, Y.N. Wang, T.F. Hong, Rapid vortex microfluidic mixer utilizing double-heart chamber. Chem. Eng. J. 249 (2014) 246–251.
DOI: 10.1016/j.cej.2014.03.037
Google Scholar
[10]
T.H. Wang, Y.W. Tsai, C.H. Tsai, C.Y. Lee, L.M. Fu, Design and analysis of impedance pumps utilizing electromagnetic actuation. Sensors 10 (2010) 4040-4052.
DOI: 10.3390/s100404040
Google Scholar
[11]
M.J. Davies, I.D. Johnston, C.K.L. Tan, M.C. Tracey, Whole blood pumping with a microthrottle pump. Biomicrofluidics 4 (2010) 044112.
DOI: 10.1063/1.3528327
Google Scholar
[12]
R. Gorkin, Clime, L, M. Madou, H. Kido, Pneumatic pumping in centrifugal microfluidic platforms . Microfluid. Nanofluid. 9 (2010) 541 – 549.
DOI: 10.1007/s10404-010-0571-x
Google Scholar
[13]
Y.M. Senousy, C.K. Harnett, Fast three dimensional ac electro-osmotic pumps with nonphotolithographic electrode patterning. Biomicrofluidics. 4 (2010) 036501.
DOI: 10.1063/1.3463719
Google Scholar
[14]
S. Ogden, L. Klintberg, G. Thornell, K. Hjort, G. Bodén, Review on miniaturized paraffin phase change actuators, valves, and pumps. Microfluid. Nanofluid. 17 (2014) 53-71.
DOI: 10.1007/s10404-013-1289-3
Google Scholar
[15]
H.T. Chang, C.Y. Lee, C.Y. Wen, Design and modeling of electromagnetic actuator in MEMS-based valveless impedance pump. Microsyst. Tech. 13 (2007) 1615–1622.
DOI: 10.1007/s00542-006-0332-7
Google Scholar
[16]
H.T. Chang, C.Y. Lee, C.Y. Wen, B.S. Hong, Theoretical analysis and optimization of electromagnetic actuation in a valveless micro impedance pump. Microelectro. J. 38 (2007) 791-799.
DOI: 10.1016/j.mejo.2007.04.013
Google Scholar
[17]
C.Y. Lee, H.T. Chang, C.Y. Wen, A MEMS-based valveless impedance pump utilizing electromagnetic actuation. J. Micromech. Microeng. 18 (2008) 085026.
DOI: 10.1088/0960-1317/18/3/035044
Google Scholar
[18]
C.Y. Lee, J.C. Leong, T.N. Wang, L.M. Fu, S.J. Chen, AfFerrofluidic magnetic micropump for variable-flow-rate applications. Jpn. J. Appl. Phys. 51 (2012) 047201.
DOI: 10.1143/jjap.51.047201
Google Scholar
[19]
M. Du, X. Ye, K. Wu, Z. Zhou, A peristaltic micro pump driven by a rotating motor with magnetically attracted steel balls, Sensors 9 (2009) 2611-2620.
DOI: 10.3390/s90402611
Google Scholar
[20]
H.W. Lee, I.H.A. Azid, Neuro-genetic optimization of the diffuser elements for applications in a valveless diaphragm micropump system, Sensors 9 (2009) 7481-7497.
DOI: 10.3390/s90907481
Google Scholar
[21]
C.T. Wang, T.S. Leu, J.M. Sun, Optimal design and operation for a no-moving-parts-valve (NMPV) micro-pump with a diffuser width of 500 µm. Sensors 9 (2009) 3666-3678.
DOI: 10.3390/s90503666
Google Scholar
[22]
A. Rossetti, R. Pavesi, G. Ardizzon, Experimental and numerical analyses of micro rotary shaft pumps. J. Micromech. Microeng. 19 (2009) 125013.
DOI: 10.1088/0960-1317/19/12/125013
Google Scholar