Design and Fabrication of PDMS/PMMA-Based Rotary Micropump

Article Preview

Abstract:

A novel micropump is proposed comprising a PMMA-based rotor, a circular PDMS micro-chamber, and a semi-circular PDMS microchannel connecting the inlet and outlet reservoirs as the rotor spins, a plug of sample fluid is trapped within the microchannel between neighboring blades of the rotor and is driven through the channel toward the outlet. Meanwhile, the rotors periodically compress and release the inlet and outlet regions of the microchannel. Thus, as the rotor turns, one plug of sample fluid is drawn into the microchannel as another is ejected into the outlet reservoir. In other words, a peristaltic pumping effect is achieved. It is shown that the flow rate in the proposed device can be controlled simply by adjusting the rotational velocity of the rotor. A maximum flow rate of 1.22 ml/min is obtained given de-ionized water as the working fluid and a rotational velocity of 232 rpm. Moreover, given the same rotational velocity, flow rates of 0.724 ml/min and 0.336 ml/min are obtained for salad oil and engine oil, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-34

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.H. Lin, W.N. Wang, L.M. Fu, Integrated microfluidic chip for rapid DNA digestion and time-resolved capillary electrophoresis analysis. Biomicrofluidics, 6 (2012) 012818.

DOI: 10.1063/1.3654950

Google Scholar

[2] L.M. Fu., W.J. Ju, Y.N. Wang, R.J. Yang, Rapid prototyping of glass-based microfluidic chips utilizing two-pass defocused CO2 Laser beam method. Microfluid. Nanofluid. 14 (2013) 479-487.

DOI: 10.1007/s10404-012-1066-8

Google Scholar

[3] L.M. Fu, W.J. Ju, R.J. Yang, Y.N. Wang, Integrated microfluidic array chip and LED photometer system for sulfur dioxide and methanol concentration detection. Chem. Eng. J. 243 (2014) 421-427.

DOI: 10.1016/j.cej.2013.12.096

Google Scholar

[4] L.M. Fu, Y.N. Wang, C.C. Liu, An integrated microfluidic chip for formaldehyde analysis in Chinese herbs. Chem. Eng. J. 244 (2014) 422-428.

DOI: 10.1016/j.cej.2014.01.085

Google Scholar

[5] L.M. Fu, T.F. Hong, C.Y. Wen, C.H. Lin, C.H. Tsai, Electrokinetic instability effects in microchannels with and without nanofilm coatings. Electrophoresis. 29 (2008) 4871-4879.

DOI: 10.1002/elps.200800455

Google Scholar

[6] M.T. Ke, J.H. Zhong, C.Y. Lee, Electromagnetically-actuated reciprocating pump for high-flow-rate microfluidic applications. Sensors. 12 (2012) 13075-13087.

DOI: 10.3390/s121013075

Google Scholar

[7] C.Y. Lee, C.Y. Wen, H.H. Hou, R.J. Yang, C.H. Tsai, L.M. Fu, Design and packaging of MEMS-based flow-rate and flow-direction microsensor. Microfluid. Nanofluid. 6 (2009) 363-371.

DOI: 10.1007/s10404-008-0381-6

Google Scholar

[8] L.M. Fu, W.J. Ju, C.H. Tsai, H.H. Hou, Y.N. Wang, R.J. Yang, Chaotic vortex micromixer utilizing gas pressure driving force. Chem. Eng. J. 214 (2013) 1-7.

DOI: 10.1016/j.cej.2012.10.032

Google Scholar

[9] L.M. Fu, W.C. Fang, H.H. Hou, Y.N. Wang, T.F. Hong, Rapid vortex microfluidic mixer utilizing double-heart chamber. Chem. Eng. J. 249 (2014) 246–251.

DOI: 10.1016/j.cej.2014.03.037

Google Scholar

[10] T.H. Wang, Y.W. Tsai, C.H. Tsai, C.Y. Lee, L.M. Fu, Design and analysis of impedance pumps utilizing electromagnetic actuation. Sensors 10 (2010) 4040-4052.

DOI: 10.3390/s100404040

Google Scholar

[11] M.J. Davies, I.D. Johnston, C.K.L. Tan, M.C. Tracey, Whole blood pumping with a microthrottle pump. Biomicrofluidics 4 (2010) 044112.

DOI: 10.1063/1.3528327

Google Scholar

[12] R. Gorkin, Clime, L, M. Madou, H. Kido, Pneumatic pumping in centrifugal microfluidic platforms . Microfluid. Nanofluid. 9 (2010) 541 – 549.

DOI: 10.1007/s10404-010-0571-x

Google Scholar

[13] Y.M. Senousy, C.K. Harnett, Fast three dimensional ac electro-osmotic pumps with nonphotolithographic electrode patterning. Biomicrofluidics. 4 (2010) 036501.

DOI: 10.1063/1.3463719

Google Scholar

[14] S. Ogden, L. Klintberg, G. Thornell, K. Hjort, G. Bodén, Review on miniaturized paraffin phase change actuators, valves, and pumps. Microfluid. Nanofluid. 17 (2014) 53-71.

DOI: 10.1007/s10404-013-1289-3

Google Scholar

[15] H.T. Chang, C.Y. Lee, C.Y. Wen, Design and modeling of electromagnetic actuator in MEMS-based valveless impedance pump. Microsyst. Tech. 13 (2007) 1615–1622.

DOI: 10.1007/s00542-006-0332-7

Google Scholar

[16] H.T. Chang, C.Y. Lee, C.Y. Wen, B.S. Hong, Theoretical analysis and optimization of electromagnetic actuation in a valveless micro impedance pump. Microelectro. J. 38 (2007) 791-799.

DOI: 10.1016/j.mejo.2007.04.013

Google Scholar

[17] C.Y. Lee, H.T. Chang, C.Y. Wen, A MEMS-based valveless impedance pump utilizing electromagnetic actuation. J. Micromech. Microeng. 18 (2008) 085026.

DOI: 10.1088/0960-1317/18/3/035044

Google Scholar

[18] C.Y. Lee, J.C. Leong, T.N. Wang, L.M. Fu, S.J. Chen, AfFerrofluidic magnetic micropump for variable-flow-rate applications. Jpn. J. Appl. Phys. 51 (2012) 047201.

DOI: 10.1143/jjap.51.047201

Google Scholar

[19] M. Du, X. Ye, K. Wu, Z. Zhou, A peristaltic micro pump driven by a rotating motor with magnetically attracted steel balls, Sensors 9 (2009) 2611-2620.

DOI: 10.3390/s90402611

Google Scholar

[20] H.W. Lee, I.H.A. Azid, Neuro-genetic optimization of the diffuser elements for applications in a valveless diaphragm micropump system, Sensors 9 (2009) 7481-7497.

DOI: 10.3390/s90907481

Google Scholar

[21] C.T. Wang, T.S. Leu, J.M. Sun, Optimal design and operation for a no-moving-parts-valve (NMPV) micro-pump with a diffuser width of 500 µm. Sensors 9 (2009) 3666-3678.

DOI: 10.3390/s90503666

Google Scholar

[22] A. Rossetti, R. Pavesi, G. Ardizzon, Experimental and numerical analyses of micro rotary shaft pumps. J. Micromech. Microeng. 19 (2009) 125013.

DOI: 10.1088/0960-1317/19/12/125013

Google Scholar