Residual Thermo-Creep Deformation of Copper Interconnects by Phase-Shifting SEM Moiré Method

Abstract:

Article Preview

The thermo-creep deformation of interconnects related to the residual stress, directly affects their performance and lifetime. In this paper, we proposed an optical method to measure the residual thermo-creep deformation of copper interconnects. This method takes advantages of grating fabrication and the phase-shifting scanning electron microscope (SEM) moiré method. The residual thermo-creep deformation can be acquired through deformation transformation. A one-way grating with frequency of 5000 lines/mm is fabricated on the surface of the copper line in a focused ion-beam (FIB) system. The principal direction of the grating is along the axis of the copper line. The sample is heated in a high temperature furnace under 90 °C for 70 min. The SEM moiré patterns before and after heating are recorded by a field emission SEM in low vacuum. Through the random phase-shifting algorithm, the residual thermo-creep deformation of the copper interconnect line is found to be 500 με. The cause of the tensile strain is analyzed. This work offers an effective technique for measuring the creep deformation of the film lines.

Info:

Periodical:

Edited by:

Abdul Nassir bin Ibrahim, Meor Yusoff Meor Sulaiman, Wan Saffiey Wan Abdullah, Mohd Reusmaazran Yusof, Amry Amin Abas and Khairiah Mohd Yazid

Pages:

185-190

DOI:

10.4028/www.scientific.net/AMM.83.185

Citation:

Q. H. Wang et al., "Residual Thermo-Creep Deformation of Copper Interconnects by Phase-Shifting SEM Moiré Method", Applied Mechanics and Materials, Vol. 83, pp. 185-190, 2011

Online since:

July 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.