Adsorption of CO2 in MCM-41 Synthesized Using Mixed Surfactants

Article Preview

Abstract:

The CO2 adsorption technology using solid adsorbent shas been considered as a promising approach to reduce CO2 emissions. Therefore, research has been developed to obtain efficient and economically viable adsorbents. The mesoporous materials of the MCM-41 type are among the candidates for effective adsorbents as a result of easy synthesis and structure which favors the flow of gas. The aim of this study was to improve the synthesis of MCM-41 using mixtures of cationic surfactants and apply in CO2 capture. The cationic surfactants used weretetradecyltrimetylammonium bromide (TTMABr - C17H38NBr) and cetyltrimethylammonium bromide (C19H42NBr) and their mixture in a ratio of 1:1. The CO2 adsorption was investigated using the gravimetric method at 298K and pressure varying up to 40 bar. The resulting materials, C17, C19 and C17C19, were characterized by XRD, FTIR, TG and SEM. The results revealed significant differences in the structure of the materials and amount of of CO2 adsorbed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-18

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] IPCC- Intergovernmental Panel on Climate Change (2014) Greenhouse gas emissionsacceleratedespite reduction efforts. Information on: http: /ipcc. ch/pdf/ar5/pr_wg3/20140413_pr_pc_wg3_en. pdf.

Google Scholar

[2] F. M. Vichi, M. T. C. Mansor. Energia, meio ambiente e economia: o Brasil no contexto mundial. Quím. Nova. 32(2009) 757-767.

DOI: 10.1590/s0100-40422009000300019

Google Scholar

[3] D. Jeremy. Economic evaluation of leading technology options for sequestration of carbon dioxide. M. S thesis, MIT, Cambridge, MA, (2000).

Google Scholar

[4] Audus, H. Leading options for the capture of CO2 at power stations. In: Presented at the 5th International Conference on Greenhouse Gas Control Technologies, Cairns, Australia, (2000) 13–16.

Google Scholar

[5] C. Song, Y. Kitamura, S. Li, K. Ogasawara. Design of a cryogenic CO2 capture system based on Stirling coolers. International Journal of Greenhouse Gas Control. 7 (2012) 107–114.

DOI: 10.1016/j.ijggc.2012.01.004

Google Scholar

[6] L. Lin, H. Bay Continuous generation of mesoporous silica particles via the use of sodium metasilicate precursor and their potential for CO2 capture. Microporous and Mesoporous Materials. 136 (2010) 25–32.

DOI: 10.1016/j.micromeso.2010.07.012

Google Scholar

[7] C. C. Costa, D. M. A. Melo, M. A. F. Melo, M. E. Mendoza, J. C. Nascimento, J. M. Andrade, et al. Effects of different structure-directing agents (SDA) in MCM-41 on the adsorption of CO2. Journal of Porous Materials. 21 (2014) 1069-1077.

DOI: 10.1007/s10934-014-9857-9

Google Scholar

[8] K. S. N. Kamarudin, N. Aliais. Adsorption performance of MCM-41 impregnated with amine for CO2 removal, Fuel Processing Technology. 106 (2012) 332-337.

DOI: 10.1016/j.fuproc.2012.08.017

Google Scholar

[9] Y. Belmabkhout, A. Sayari. Effect of pore expansion and amine functionalization of mesoporous silica on CO2 adsorption over a wide range of conditions. Adsorption. 15 (2009) 318–328.

DOI: 10.1007/s10450-009-9185-6

Google Scholar

[10] S. Beck, K.D. Schmitt, J.B. Higgins, J.L. Schlenkert. New family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 14 (1992) 10834.

Google Scholar

[11] S. Brunauer, P.H. Emmett, E. Teller. Gases in multimolecular layers.J. Am. Chem. Soc. 60 (1938) 309–319.

DOI: 10.1021/ja01269a023

Google Scholar

[12] E. P. Barrett, L. G. Joyner, P. P. Halenda. The determination of porevolume and area distributions in porous substances. I. Computationsfrom nitrogen isotherms. J. Am. Chem. Soc. 73 (1951) 373–380.

DOI: 10.1021/ja01145a126

Google Scholar

[13] R. Staudt, G. Saller, M. Tomalla, J.U. Keller. A note on Gravimetric Measurements of Gas_Adsorption Equilibria, Ber. Bunsenges. Phys. Chem. 97 (1993) 98.

DOI: 10.1002/bbpc.19930970117

Google Scholar

[14] J.U. Keller, R. Staudt. Springer, Gas adsorption equilibria: experimental methods and adsorptive isotherms. Spriger: New York; (2005).

Google Scholar

[15] F. Rouquerol, J. Rouquerol, K. Sing, Adsorption by Powders and Porous Solids – Principles, Methodology and Applications. Academic Press: San Diego; (1999).

DOI: 10.1016/b978-012598920-6/50004-x

Google Scholar

[16] O. Talu, Needs, status, techniques and problems with binary gas adsorption experiments Adv. Colloid Interface Sci. 227 (1998) 76–77.

DOI: 10.1016/s0001-8686(98)00048-7

Google Scholar

[17] P. Chowdhury, C. Bikkina, D. Meister, F. Dreisbach, S. Gumma. Comparison of adsorption isotherms on Cu-BTC metal organic frameworks synthesized from different routes. MicroporousMesoporous Mater. 117 (2009) 406. 1.

DOI: 10.1016/j.micromeso.2008.07.029

Google Scholar

[18] P. Chowdhury, S. Mekala, F. Dreisbach, S. Gumma. Adsorption of CO, CO2 and CH4 on Cu-BTC and MIL-101 metal organic frameworks: Effect of open metal sites and adsorbate polarity. MicroporousMesoporous Mater. 152 (2012) 246.

DOI: 10.1016/j.micromeso.2011.11.022

Google Scholar

[19] IUPAC Technical Reports and Recommendations. Pure Appl. Chem. 57 (1985) 603.

Google Scholar

[20] E. M. Flanigen, H. Khatami, H. A. Szymanski. Molecular Sieve Zeolites 121 ed. Adv. Chem. Ser. Am. Chem. Society: Washington, D.C.; (1971).

Google Scholar

[21] M.A. Clambor, A. Corma, A. Martinez, J. J. Pérez-Pariente. Synthesis of a titanium silico aluminate isomorphous to zeolite beta and its application as a catalyst for the selective oxidation of large organic molecules. Chem. Soc. Chem. Commun. 8 (1992).

DOI: 10.1039/c39920000589

Google Scholar

[22] A. Montes, E. Cosenza, G. Giannetto, E. Urquieta, R. A. De Melo, N. S. Gnep, M. GUISNET. Thermal decomposition of surfactant occluded in mesoporous MCM-41 type solids. Mesoporous Molecular Sieves. 117 (1998) 237-242.

DOI: 10.1016/s0167-2991(98)80997-x

Google Scholar

[23] M. Park, S. Komarneni. Stepwise functionalization of mesoporous crystalline silica materials. Microporous and Mesoporous Materials. 25 (1998) 75-80.

DOI: 10.1016/s1387-1811(98)00173-5

Google Scholar

[24] S. Shylesh, R. K. Jha, A. P. Singh. Assembly of hydrothermally stable ethane-bridged periodic mesoporousorganosilicas with spherical and wormlike structures. Micropor. Mesopor. Mater. 94 (2006) 364.

DOI: 10.1016/j.micromeso.2006.04.012

Google Scholar

[25] K. J. Jr. Balkus, A. S. Scott, M. E. Gimon- Kinsel, J. H. Blanco. Oriented films of mesoporous MCM-41 macroporous tubules via pulsed laser deposition. Micropor. Mesopor. Mater. 38 (2000) 97.

DOI: 10.1016/s1387-1811(99)00178-x

Google Scholar

[26] Wang, X. S, Guo, X. W.: Synthesis, characterization and catalytic properties of low cost titanium silicalite. Catal. Today 51 (1999) 177.

DOI: 10.1016/s0920-5861(99)00020-6

Google Scholar

[27] T. G. Oliveira, S. W. M. Machado, S. C. G. Santos, M. J. B. Souza, A. M. G. Pedrosa. Adsorção de CO2 em peneiras moleculares micro e mesoporosas. 200 (2014) 1-8.

Google Scholar

[28] V. Meynen, P. Cool, E. F. Vansant. Verified syntheses of mesoporous materials. Microporous Mesoporous Mater. 125 (2009) 170.

DOI: 10.1016/j.micromeso.2009.03.046

Google Scholar

[29] J. Fan, J. Lei, L. Wang, C. Yu, B. Tu, D. Zhao. Rapid and high-capacity immobilization of enzymes based on mesoporous silicas with controlled morphologies. Chem. Commun. 17 (2003) 2140.

DOI: 10.1039/b304391f

Google Scholar

[30] N. Pal, A. Bhaumik. Soft templating strategies for the synthesis of mesoporous materials: Inorganic, organic–inorganic hybrid and purely organic solids. Adv. Colloid Interface Sci. 21 (2013) 189-190.

DOI: 10.1016/j.cis.2012.12.002

Google Scholar