Evaluation of the Behavior of Hydrotalcite Like-Materials for CO2 Capture

Article Preview

Abstract:

Several compounds are being investigated for CO2 capture, besides alkolamines, including solid materials as activated charcoal, zeolites, metal organic frameworks, metal oxides and hydrotalcites. Hydrotalcites, also called layered double hydroxides (LDHs), present some characteristics that are very interesting for CO2 capture, including their speed to achieve equilibrium and their high regeneration. These compounds can be represented by the general formula [M1-x2+Mx3+(OH)2]x+ [(An-)x/n.yH2O]x, where M2+ and M3+ are divalent metals and trivalent cations, respectively, and An- is an anion of valency n which occupies the interlayer region, and maintains electrical neutrality of these materials. In the present work, we have synthesized specific LDHs, thermally modified for CO2 sorption. LDH’s were synthesized intercalated with carbonate anions employing the heterogeneous precipitation method, also known as co precipitation method. After LDH's calcination at different temperatures, the formation of oxides was observed with different surface areas and therefore a varied adsorption capacity. The products were characterized by X-ray diffraction, infrared absorption spectroscopy and thermo gravimetric analysis. The maximum efficiency of CO2 adsorption was observed at reduced pressure with the calcined sample of LDH-CO3, Mg2Al which indicates that the material maintained stable and with a high crystallinity. These properties presented for LDH-CO3, Mg2Al synthesized in this work indicate that these materials can be good and also cheap candidates for CO2 capture.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-10

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] IPCC, Intergovernmental Panel on climate change. 2013. Fifth assessment report (AR5). Information on http: /www. ipcc. ch.

Google Scholar

[2] OECD, International Energy Agency – IEA. 2014. CO2 EMISSIONS FROM FUEL COMBUSTION Highlights. Information on http: /www. iea. org.

Google Scholar

[3] Information on http: /www. saskpower. com.

Google Scholar

[4] T. Damartzis, et al., Process flowsheet design optimization for various amine-based solvents in postcombustion CO2 capture plants, Journal of Cleaner Production (2015), in progress.

DOI: 10.1016/j.jclepro.2015.04.129

Google Scholar

[5] D. P. Harrison, Greenhouse Gas Control Technologies 2 (2005) 1101.

Google Scholar

[6] Q. Wang, J. Luo, Z. Zhong and A. Borgna, CO2 Capture by solid adsorbents and their applications: current status and new trends, Energy Environ Sci. 4 (2011) 42-55.

DOI: 10.1039/c0ee00064g

Google Scholar

[7] Abanades, J.C., et al., Emerging CO2 capture systems, Int. J. Greenhouse Gas Control (2015), in progress.

Google Scholar

[8] J. Boon, P.D. Cobden, H. A. J. van Dijk, C. Hoogland, E.R. van Selow and M. van Sint Annaland, Chemical Engineering Journal 248 (2014) 406–414.

DOI: 10.1016/j.cej.2014.03.056

Google Scholar

[9] R. Allmann, Doppelschichtstrukturen mit brucitähnlichen Schichtionen [Me(II)1-x Me(III)x (OH)2]x+, Chimia 4 (1970) 99-108.

Google Scholar

[10] S. Miyata, The Syntheses of Hydrotalcite-Like Compounds-Chemical Properties-I: The Systems Mg2+-Al3+-NO3-, Mg2+-Al3+-Cl-, Mg2+-Al3+-ClO4-, Ni2+-Al3+-Cl- and Zn2+-Al3+-Cl-, Clays and Clay Minerals 23 (1975) 369-375.

DOI: 10.1346/ccmn.1975.0230508

Google Scholar

[11] S. Miyata and A. Okada, Synthesis of Hydrotalcite-Like Compounds and Their Physico-Chemical Properties - The Systems Mg2+-Al3+-SO42- and Mg2+-Al3+-CrO42-, Clays and Clay Minerals 25 (1977) 14-18.

DOI: 10.1346/ccmn.1977.0250103

Google Scholar

[12] M. J. Reis, Estudo da adsorção de tensoativos aniônicos sulfonados em hidróxidos duplos lamelares. Ribeirão Preto, 2004. USP: Universidade de São Paulo.

DOI: 10.11606/d.59.2004.tde-07122006-090742

Google Scholar

[13] L. C. de Moura, Intercalação de Polioxometalatos em Hidróxidos Duplos Lamelares. Rio de Janeiro, 2001. UFRJ: Universidade Federal do Rio de Janeiro.

DOI: 10.24869/psyd.2022.447

Google Scholar

[14] T. Masamichi, G. Mao, T. Yoshida and Y. Tamaura, Hydrotalcites with an extended Al3+-substitution: Synthesis, simultaneous TG-DTA-MS study, and their CO2 adsorption behaviors, J. Mater. Res. 8 (1993) 113-1142.

DOI: 10.1557/jmr.1993.1137

Google Scholar

[15] Z. Yong and A. E. Rodrigues, Hydrotalcite-like compounds as adsorbents for carbon dioxide, Energy Conversion and Management 43 (2002) 1865-1876.

DOI: 10.1016/s0196-8904(01)00125-x

Google Scholar

[16] S. A. Hatimondi, Síntese e Caracterização de Compostos Híbridos Supramoleculares de Cr(III) e Al(III) para Captura de CO2. Rio de Janeiro: UFRJ, (2012).

Google Scholar

[17] M. A. Drezdzon, Synthesis of Isopolymetalate-Pillared Hydrotalcite via Organic-Anion-Pillared precursors, Inorg. Chem. 27 (1988) 4628-4632.

DOI: 10.1021/ic00298a024

Google Scholar

[18] Y. Ding and E. Alpay, Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent, Chemical Engineering Science 55 (2000) 3461-3474.

DOI: 10.1016/s0009-2509(99)00596-5

Google Scholar

[19] H .A. J. van Dijk, S. Walspurger, P. D. Cobden, R. W. van den Brink and F. G . de Vos, Testing of hydrotalcite-based sorbents for CO2 and H2S capture for use in sorption enhanced water gas shift. International, Journal of Greenhouse Gas Control 5 (2011).

DOI: 10.1016/j.ijggc.2010.04.011

Google Scholar

[20] O. Aschenbrennera, P. McGuireb, S. Alsamaqb, J. Wangb, S. Supasitmongkola, B. Al-Durib, P. Styringa and Joseph Woodb, Adsorption of carbon dioxide on hydrotalcite-like compounds of different compositions, Chemical Engineering Research and Design 89 (2011).

Google Scholar

[21] Q. Wang, H. H. Tay, Z. Guo, L. Chen, Y. Liu, J. Chang, Z. Zhong, J. Luo and A. Borgna, Morphology and composition controllable synthesis of Mg–Al–CO3 hydrotalcites by tuning the synthesis pH and the CO2 capture capacity, Applied Clay Science 55 (2012).

DOI: 10.1016/j.clay.2011.07.024

Google Scholar

[22] Shuang Li, Yixiang Shi, Yi Yang and Ningsheng Cai, Elevated Pressure CO2 Adsorption Characteristics of KpromotedHydrotalcites for Pre-combustion Carbon Capture, Energy Procedia 37 (2013) 2224-2231.

DOI: 10.1016/j.egypro.2013.06.102

Google Scholar

[23] J. Boon, P. D. Cobden, H. A. J. van Dijk, C. Hoogland, E.R. van Selow and M. van Sint Annaland, Isotherm model for high-temperature, high-pressure adsorption of CO2 and H2O on K-promoted hydrotalcite, Chemical Engineering Journal 248 (2014).

DOI: 10.1016/j.cej.2014.03.056

Google Scholar

[24] Yi Yang, Yixiang Shi, Shuang Li and Ningsheng Cai, Experimental Characterization and Mechanistic Simulation of CO2 Adsorption/Desorption Processes for Potassium Promoted Hydrotalcites Sorbent, Energy Procedia 63 (2014) 2359-2366.

DOI: 10.1016/j.egypro.2014.11.257

Google Scholar

[25] A. Hanif, S. Dasgupta, S. Divekar, A. Arya, M. O. Garg and A. Nanoti, A study on high temperature CO2 capture by improved hydrotalcite sorbents, Chemical Engineering Journal 236 (2014) 91-99.

DOI: 10.1016/j.cej.2013.09.076

Google Scholar

[26] C. V. Pramod, K. Upendar, V. Mohan, D. Srinivasa Sarma, G. Murali Dhar, P.S. Sai Prasad, B. David Raju and K.S. Rama Rao, Hydrotalcite-SBA-15 composite material for efficient carbondioxide capture, Journal of CO2 Utilization (2015).

DOI: 10.1016/j.jcou.2015.05.002

Google Scholar

[27] L. Liu, C. Zhao, J. Xu and Y. Li, Integrated CO2 capture and photocatalytic conversion by a hybridadsorbent/photocatalyst material, Applied Catalysis B: Environmental 179 (2015) 489–499.

DOI: 10.1016/j.apcatb.2015.06.006

Google Scholar

[28] E. Kanezaki, Thermal behavior of the hydroxide-like layered structure of Mg and Al-layered double hydroxide with interlayer carbonate by means of in situ power HTXRD and DTA/TG, Solid State Ionics 106 (1998) 279-284.

DOI: 10.1016/s0167-2738(97)00494-3

Google Scholar

[29] E. Kanezaki, Direct Observation of a Metastable Solid Phase of Mg/Al/CO3-Layered Double Hydroxide by Means of High Temperature In Situ Power XRD and DTA/TG, Inorg. Chem. 37 (1998) 2588-2590.

DOI: 10.1021/ic971543l

Google Scholar

[30] S. S. Mitra, in: F. Seitz, D. Turnbull (Eds. ), Solid State Physics. New York, Academic, 1962, v. 13, pp.2-80.

Google Scholar

[31] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordenation Compounds, 5o Ed., New York, John Wiley, (1986).

Google Scholar

[32] P. Tarte, Infra-red spectra of inorganic aluminates and characteristic vibrational frequencies of AlO4 tetrahedra and AlO6 octahedra, Spectrochimica Acta 23A (1967) 2127-2143.

DOI: 10.1016/0584-8539(67)80100-4

Google Scholar

[33] C. J. Serna, L. J. Rendon and J. L. Iglesias, Crystal-Chemical Study of Layered [Al2Li(OH)6]+X-. nH2O, Clays and Clay Minerals 30 (1982) 180-184.

DOI: 10.1346/ccmn.1982.0300303

Google Scholar

[34] M, Bellotto et al, Hydrotalcite Decomposition Mechanism: A Clue to the Structure and Reactivity of Spinel-like Mixed Oxide, J. Phys. Chem. 100 (1996) 8535-8542.

DOI: 10.1021/jp960040i

Google Scholar

[35] T. W. Reichle, S. Y. Kang and D. S. Everhardi, The Nature of the Thermal Decomposition of a Catalytically Active Anionic Clay Mineral, Jounal of Catalysis 101 (1986) 352-359.

DOI: 10.1016/0021-9517(86)90262-9

Google Scholar

[36] Z. Yong, V. Mata and A. E. Rodrigues, Adsorption of Carbon Dioxide onto Hydrotalcite-like Compounds (HTIcs) at High Temperatures, Ind. Eng. Chem. Res. 40 (2001) 204-209.

DOI: 10.1021/ie000238w

Google Scholar

[37] M. K. R. Reddy et al. Layered Double Hydroxides for CO2 Capture: Structure Evolution and Regeneration, Ind. Eng. Chem. Res. 45 (2006) 7504-7509.

DOI: 10.1021/ie060757k

Google Scholar