[1]
IPCC, Intergovernmental Panel on climate change. 2013. Fifth assessment report (AR5). Information on http: /www. ipcc. ch.
Google Scholar
[2]
OECD, International Energy Agency – IEA. 2014. CO2 EMISSIONS FROM FUEL COMBUSTION Highlights. Information on http: /www. iea. org.
Google Scholar
[3]
Information on http: /www. saskpower. com.
Google Scholar
[4]
T. Damartzis, et al., Process flowsheet design optimization for various amine-based solvents in postcombustion CO2 capture plants, Journal of Cleaner Production (2015), in progress.
DOI: 10.1016/j.jclepro.2015.04.129
Google Scholar
[5]
D. P. Harrison, Greenhouse Gas Control Technologies 2 (2005) 1101.
Google Scholar
[6]
Q. Wang, J. Luo, Z. Zhong and A. Borgna, CO2 Capture by solid adsorbents and their applications: current status and new trends, Energy Environ Sci. 4 (2011) 42-55.
DOI: 10.1039/c0ee00064g
Google Scholar
[7]
Abanades, J.C., et al., Emerging CO2 capture systems, Int. J. Greenhouse Gas Control (2015), in progress.
Google Scholar
[8]
J. Boon, P.D. Cobden, H. A. J. van Dijk, C. Hoogland, E.R. van Selow and M. van Sint Annaland, Chemical Engineering Journal 248 (2014) 406–414.
DOI: 10.1016/j.cej.2014.03.056
Google Scholar
[9]
R. Allmann, Doppelschichtstrukturen mit brucitähnlichen Schichtionen [Me(II)1-x Me(III)x (OH)2]x+, Chimia 4 (1970) 99-108.
Google Scholar
[10]
S. Miyata, The Syntheses of Hydrotalcite-Like Compounds-Chemical Properties-I: The Systems Mg2+-Al3+-NO3-, Mg2+-Al3+-Cl-, Mg2+-Al3+-ClO4-, Ni2+-Al3+-Cl- and Zn2+-Al3+-Cl-, Clays and Clay Minerals 23 (1975) 369-375.
DOI: 10.1346/ccmn.1975.0230508
Google Scholar
[11]
S. Miyata and A. Okada, Synthesis of Hydrotalcite-Like Compounds and Their Physico-Chemical Properties - The Systems Mg2+-Al3+-SO42- and Mg2+-Al3+-CrO42-, Clays and Clay Minerals 25 (1977) 14-18.
DOI: 10.1346/ccmn.1977.0250103
Google Scholar
[12]
M. J. Reis, Estudo da adsorção de tensoativos aniônicos sulfonados em hidróxidos duplos lamelares. Ribeirão Preto, 2004. USP: Universidade de São Paulo.
DOI: 10.11606/d.59.2004.tde-07122006-090742
Google Scholar
[13]
L. C. de Moura, Intercalação de Polioxometalatos em Hidróxidos Duplos Lamelares. Rio de Janeiro, 2001. UFRJ: Universidade Federal do Rio de Janeiro.
DOI: 10.24869/psyd.2022.447
Google Scholar
[14]
T. Masamichi, G. Mao, T. Yoshida and Y. Tamaura, Hydrotalcites with an extended Al3+-substitution: Synthesis, simultaneous TG-DTA-MS study, and their CO2 adsorption behaviors, J. Mater. Res. 8 (1993) 113-1142.
DOI: 10.1557/jmr.1993.1137
Google Scholar
[15]
Z. Yong and A. E. Rodrigues, Hydrotalcite-like compounds as adsorbents for carbon dioxide, Energy Conversion and Management 43 (2002) 1865-1876.
DOI: 10.1016/s0196-8904(01)00125-x
Google Scholar
[16]
S. A. Hatimondi, Síntese e Caracterização de Compostos Híbridos Supramoleculares de Cr(III) e Al(III) para Captura de CO2. Rio de Janeiro: UFRJ, (2012).
Google Scholar
[17]
M. A. Drezdzon, Synthesis of Isopolymetalate-Pillared Hydrotalcite via Organic-Anion-Pillared precursors, Inorg. Chem. 27 (1988) 4628-4632.
DOI: 10.1021/ic00298a024
Google Scholar
[18]
Y. Ding and E. Alpay, Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent, Chemical Engineering Science 55 (2000) 3461-3474.
DOI: 10.1016/s0009-2509(99)00596-5
Google Scholar
[19]
H .A. J. van Dijk, S. Walspurger, P. D. Cobden, R. W. van den Brink and F. G . de Vos, Testing of hydrotalcite-based sorbents for CO2 and H2S capture for use in sorption enhanced water gas shift. International, Journal of Greenhouse Gas Control 5 (2011).
DOI: 10.1016/j.ijggc.2010.04.011
Google Scholar
[20]
O. Aschenbrennera, P. McGuireb, S. Alsamaqb, J. Wangb, S. Supasitmongkola, B. Al-Durib, P. Styringa and Joseph Woodb, Adsorption of carbon dioxide on hydrotalcite-like compounds of different compositions, Chemical Engineering Research and Design 89 (2011).
Google Scholar
[21]
Q. Wang, H. H. Tay, Z. Guo, L. Chen, Y. Liu, J. Chang, Z. Zhong, J. Luo and A. Borgna, Morphology and composition controllable synthesis of Mg–Al–CO3 hydrotalcites by tuning the synthesis pH and the CO2 capture capacity, Applied Clay Science 55 (2012).
DOI: 10.1016/j.clay.2011.07.024
Google Scholar
[22]
Shuang Li, Yixiang Shi, Yi Yang and Ningsheng Cai, Elevated Pressure CO2 Adsorption Characteristics of KpromotedHydrotalcites for Pre-combustion Carbon Capture, Energy Procedia 37 (2013) 2224-2231.
DOI: 10.1016/j.egypro.2013.06.102
Google Scholar
[23]
J. Boon, P. D. Cobden, H. A. J. van Dijk, C. Hoogland, E.R. van Selow and M. van Sint Annaland, Isotherm model for high-temperature, high-pressure adsorption of CO2 and H2O on K-promoted hydrotalcite, Chemical Engineering Journal 248 (2014).
DOI: 10.1016/j.cej.2014.03.056
Google Scholar
[24]
Yi Yang, Yixiang Shi, Shuang Li and Ningsheng Cai, Experimental Characterization and Mechanistic Simulation of CO2 Adsorption/Desorption Processes for Potassium Promoted Hydrotalcites Sorbent, Energy Procedia 63 (2014) 2359-2366.
DOI: 10.1016/j.egypro.2014.11.257
Google Scholar
[25]
A. Hanif, S. Dasgupta, S. Divekar, A. Arya, M. O. Garg and A. Nanoti, A study on high temperature CO2 capture by improved hydrotalcite sorbents, Chemical Engineering Journal 236 (2014) 91-99.
DOI: 10.1016/j.cej.2013.09.076
Google Scholar
[26]
C. V. Pramod, K. Upendar, V. Mohan, D. Srinivasa Sarma, G. Murali Dhar, P.S. Sai Prasad, B. David Raju and K.S. Rama Rao, Hydrotalcite-SBA-15 composite material for efficient carbondioxide capture, Journal of CO2 Utilization (2015).
DOI: 10.1016/j.jcou.2015.05.002
Google Scholar
[27]
L. Liu, C. Zhao, J. Xu and Y. Li, Integrated CO2 capture and photocatalytic conversion by a hybridadsorbent/photocatalyst material, Applied Catalysis B: Environmental 179 (2015) 489–499.
DOI: 10.1016/j.apcatb.2015.06.006
Google Scholar
[28]
E. Kanezaki, Thermal behavior of the hydroxide-like layered structure of Mg and Al-layered double hydroxide with interlayer carbonate by means of in situ power HTXRD and DTA/TG, Solid State Ionics 106 (1998) 279-284.
DOI: 10.1016/s0167-2738(97)00494-3
Google Scholar
[29]
E. Kanezaki, Direct Observation of a Metastable Solid Phase of Mg/Al/CO3-Layered Double Hydroxide by Means of High Temperature In Situ Power XRD and DTA/TG, Inorg. Chem. 37 (1998) 2588-2590.
DOI: 10.1021/ic971543l
Google Scholar
[30]
S. S. Mitra, in: F. Seitz, D. Turnbull (Eds. ), Solid State Physics. New York, Academic, 1962, v. 13, pp.2-80.
Google Scholar
[31]
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordenation Compounds, 5o Ed., New York, John Wiley, (1986).
Google Scholar
[32]
P. Tarte, Infra-red spectra of inorganic aluminates and characteristic vibrational frequencies of AlO4 tetrahedra and AlO6 octahedra, Spectrochimica Acta 23A (1967) 2127-2143.
DOI: 10.1016/0584-8539(67)80100-4
Google Scholar
[33]
C. J. Serna, L. J. Rendon and J. L. Iglesias, Crystal-Chemical Study of Layered [Al2Li(OH)6]+X-. nH2O, Clays and Clay Minerals 30 (1982) 180-184.
DOI: 10.1346/ccmn.1982.0300303
Google Scholar
[34]
M, Bellotto et al, Hydrotalcite Decomposition Mechanism: A Clue to the Structure and Reactivity of Spinel-like Mixed Oxide, J. Phys. Chem. 100 (1996) 8535-8542.
DOI: 10.1021/jp960040i
Google Scholar
[35]
T. W. Reichle, S. Y. Kang and D. S. Everhardi, The Nature of the Thermal Decomposition of a Catalytically Active Anionic Clay Mineral, Jounal of Catalysis 101 (1986) 352-359.
DOI: 10.1016/0021-9517(86)90262-9
Google Scholar
[36]
Z. Yong, V. Mata and A. E. Rodrigues, Adsorption of Carbon Dioxide onto Hydrotalcite-like Compounds (HTIcs) at High Temperatures, Ind. Eng. Chem. Res. 40 (2001) 204-209.
DOI: 10.1021/ie000238w
Google Scholar
[37]
M. K. R. Reddy et al. Layered Double Hydroxides for CO2 Capture: Structure Evolution and Regeneration, Ind. Eng. Chem. Res. 45 (2006) 7504-7509.
DOI: 10.1021/ie060757k
Google Scholar