Evaluation of the Installation of a Biofuel Producing Algae Farm in an Ethanol Plant

Article Preview

Abstract:

With the demand for Biofuels growing – worldwide – and with the efforts to reduce greenhouse gas emissions (GHG), much would be gained, from an environmentally and economically, from increasing efficiency and offer of biofuels. Biofuels produced in algae farms enable a close relationship with ethanol plants. Such algae feeds off Carbon Dioxide from biomass burned in ethanol plants and boilers, so, along with Brazil’s privileged solar incidence, this allows conversion of GHG to biofuel. The goal of our study was to investigate ethanol plants as productive systems to understand how adding algae farms could change energy efficiency and emissions. The system analyzed includes the sugarcane sowing, plantation, handling, harvesting, industrial activities, and ethanol distribution. Our aim, from this analysis and using primary data from a company that builds algae farms, is to estimate the output of algae biofuel and decrease of GHG emissions in the process. The results from the Plant Studied show that adding an algae farm to its grounds would improve energy efficiency by almost three times, while generating four times less GHG in the production chain. If the plant chose to produce exclusively Biodiesel, production of B100 Biodiesel would be enough for their diesel needs for 19 years, with a 78.4% cleaner fuel in terms of GHG. Approximations show that if all the cane mills add algae farms in Brazil, Biodiesel generation would be equivalent to almost 70% of the Brazilian production of diesel from 2012.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

117-124

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] COMISSION OF EUROPEAN COMMUNITIES. Communication from the commission to the council, the european parliament, the european economic and social committee and the committee of the region. Limiting Global Climate Change to 2 degrees Celsius The way ahead for 2020 and beyond. Bruxelas, (2007).

DOI: 10.1163/9789004322714_cclc_2020-0164-0816

Google Scholar

[2] MDIC, SECEX, Information on: http: /aliceweb. desenvolvimento. gov. br. Accessed at 20/02/(2013).

Google Scholar

[3] SOARES, L. H. B.; ALVES, B. J. R.; URQUIAGA, S.; BODDEY, R. M.S., Mitigação das Emissões de Gases Efeito Estufa pelo Uso de Etanol da Cana de Açuar Produzido no Brasil. Embrapa: Circular Técnica #27. Seropédica, RJ, Brasil. Abril, (2009).

DOI: 10.11606/d.86.2011.tde-10082011-152907

Google Scholar

[4] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR ISO 14040 Gestão Ambiental – Avaliação do ciclo de vida – Princípios e estrutura. Rio de Janeiro: ABNT– Associação Brasileira de Normas Técnicas, 2001. p.10.

DOI: 10.11606/d.18.2011.tde-25042011-103032

Google Scholar

[5] IPCC. 2006 IPCC GUIDELINES FOR NATIONAL GREENHOUSE GAS INVENTORIES. Kanagawa: The Intergovernmental Panel on Climate Change (IPCC), 2006a. Technical Report.

DOI: 10.1007/springerreference_28950

Google Scholar

[6] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR ISO 14042 Gestão Ambiental – Avaliação do ciclo de vida. In: Abnt (Ed. ). Avaliação do ciclo de vida – Avaliação do impacto do ciclo de vida. Brasil. Rio de Janeiro: ABNT, 2004. Cap. 17.

DOI: 10.11606/t.3.2007.tde-08012008-151424

Google Scholar

[7] MACEDO, I. C. Balanço de energia e emissões de GEE na produção do açúcar e álcool orgânicos na Usina São Francisco. Campinas, (2008).

DOI: 10.47749/t/unicamp.2016.982192

Google Scholar

[8] BODDEY, R. M.; SOARES, L. H. D. B.; ALVES, B. J. R.; URQUIAGA, S. Bio- Ethanol Production in Brazil. In: Biofuels, solar and wind as renewable energy systems benefits and risks. New York Springer, 2008. p.32.

DOI: 10.1007/978-1-4020-8654-0_13

Google Scholar

[9] MACEDO, I. D.; CARVALHO, E. P. A Energia da Cana-de-Açúcar – Doze estudos sobre a agroindústria da cana-de-açúcar no Brasil e a sua sustentabilidade. (Berlendis & Vertecchia) (p.65). São Paulo: UNICA - União da Agroindústria Canavieira do Estado de São Paulo, (2004).

DOI: 10.11606/t.11.1988.tde-20210104-160735

Google Scholar

[10] MALÇA, J.; FREIRE, F. Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl tertiary butyl ether (bioETBE): Assessing the implications of allocation. Energy, v. 31, n. 15, pp.3362-3380, (2006).

DOI: 10.1016/j.energy.2006.03.013

Google Scholar

[11] DÍAZ, M. A. D.; CARVALHO, V. C. H. A, Field technical report –restricted disclosure. (2013).

Google Scholar

[12] SAT. Personal interview with the board directors of the company See Algae Techonology,. (2011).

Google Scholar

[13] CORTEZ, L. A. B., GOMEZ, E. O., A method for exergy analysis of sugarcane bagasse boilers, Brazilian Journal of Chemical Engineering, (1998).

Google Scholar

[14] SILVA, P.R.F.; FREITAS, T.F.S. Biodiesel: o ônus e o bônus de produzir combustível. Programa de Pósgraduação em Fitotecnia, Faculdade de Agronomia, Departamento de Plantas de Lavoura, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil.

DOI: 10.21475/ajcs.18.12.03.pne619

Google Scholar

[15] DÍAZ, M. A. D.; GOMES, M. S. P., Life cycle assessment of the Brazilian sugarcane ethanol aiming its environmental certification, MSc. Dissertation. Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro. Rio de Janeiro, 2011. 115p.

DOI: 10.29289/2594539420180000232

Google Scholar

[16] ANP, Anual Report of the National Petroleum Agency, Brasilia, (2012).

Google Scholar