Pitfalls of CO2 Injection in Enhanced Oil Recovery

Article Preview

Abstract:

The intent of this paper is to offer a comprehensive understanding of the pitfalls associated with CO2-rich gas injection during enhanced oil recovery (EOR) operations. An emphasis is placed, however, on the interactions between this gas and crude oil asphaltenes, because these later compounds are heavy organic molecules which can destabilize, flocculate and precipitate in CO2-rich environments, thus triggering a major field problem: injectivity loss due to near-wellbore (inflow) formation damage: an Achilles heel for any EOR process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-133

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. L. Creek, J. Wang, J. S. Buckley, Verification of Asphaltene-Instability-Trend (ASIST) Predictions for Low-Molecular-Weight Alkanes, SPE 125203. (2009).

DOI: 10.2118/125203-pa

Google Scholar

[2] IP -143/01 Method - Determination of asphaltenes (heptane insoluble) in crude petroleum and petroleum products, Institute of Petroleum, London, UK, (2001).

DOI: 10.1520/d6560-12

Google Scholar

[3] M. R. Gray; R. R. Tykwinsky; J. M. Stryker; X. Tan, Supramolecular Assembly Model for Aggregation of Petroleum Asphaltenes. Energy & Fuels, v. 25, n. 7, pp.3125-3134, (2011).

DOI: 10.1021/ef200654p

Google Scholar

[4] J. B. J. D. Boussingault (1802 -1887), Information on: pt/wikipedia. org, access: 08/09/2014, 10: 00h.

Google Scholar

[5] Z. Wang, J. Ma, R. Ga, F. Zeng, C. Huang, P. Tontiwachwuthikul, Z. Liang, Optimizing cyclic CO2 injection for low- permeability oil reservoirs through experimental study, SPE 167193. (2013).

DOI: 10.2118/167193-ms

Google Scholar

[6] V. Sharma, A. Groenzin, A. H. Tomiata, O. C. Mullins, Asphaltene molecular size and structure, Energy & Fuels (2002) 16, 490.

Google Scholar

[7] C. A. Lalchan, B. J. Neil, D. M. Maley, Prevention of acid induced asphaltene precipitation: a comparison of anionic vs. cationic surfactants. SPE 164087, (2013), doi: 10. 2118/164087-MS.

DOI: 10.2118/164087-ms

Google Scholar

[8] L. Nabzar, M. E. Aguillera, Y. Rajoub, Experimental study on asphaltene-induced formation damage, SPE 93062. (2005).

DOI: 10.2118/93062-ms

Google Scholar

[9] S. Negahban, N. Joshi, A. K. M. Jamaluddin, J. Nighswander, A systematic approach for experimental study of asphaltene deposition for an Abu Dhabi reservoir under WAG development plan, SPE 80261. (2003).

DOI: 10.2118/80261-ms

Google Scholar

[10] B. Lepski, Z. Bassiouni, J. M. Wolcott, Screening of oil reservoirs for gravity assisted gas injection, SPE 39659, (1998), doi: 10. 2118/39659-MS.

DOI: 10.2118/39659-ms

Google Scholar

[11] K. D. Hakendorn, F. M Orr, Component partitioning in CO2/crude oil systems: effects of oil composition on CO2 displacement performance , SPE 25169. (1994).

DOI: 10.2118/25169-pa

Google Scholar

[12] E. F. Gholoum, G. P Oskui, M. Salman, Investigation of asphaltene precipitation onset Conditions for Kuwaiti Reservoirs". SPE 81571. (2003).

DOI: 10.2118/81571-ms

Google Scholar

[13] S. M. Al-Mutairi, S. A. Abu-Khamsin, M. E. Hossaim, A novel approach to handle continuous wettability alteration during immiscible CO2 flooding process, SPE 160638. (2012).

DOI: 10.2118/160638-ms

Google Scholar

[14] H. Elshahaki, M. N. Hashen, O. C. Mullins, G. Fujisawa, The missing link - identification of reservoir compartmentalization through downhole fluid analysis, SPE 94709. (2005).

DOI: 10.2118/94709-ms

Google Scholar

[15] J. Burke, Solubility parameters, theory and application, J. Amer. Inst. of Conservation, (Vol 3), (1984).

Google Scholar

[16] C. R. Mansur, J. I. S. Aguiar, P. R. S. Silva, E. F. Lucas, G. González, Determining the solubility parameter of asphaltenes by microcalorimetry, in: 10 th Int. Conf. on Pet. Phase Behavior and Fouling, Rio de Janeiro (2009).

Google Scholar

[17] A. F. M. Barton, Handbook of solubility parameters and other cohesion parameters, 2nd edition (1991). CRC Press, Boca Raton, Florida, USA.

Google Scholar

[18] D. Denney, EOR potential in the Middle East: current and future trends, JPT, January, 70 -73, (2012).

Google Scholar

[19] S. M Al-Mutairi, S. L. Kokal, EOR potential in the Middle East: current and future trends. SPE 143287. (2011).

DOI: 10.2118/143287-ms

Google Scholar

[20] M. K. Silva, F. M. Orr, Effect of oil composition on minimum miscibility pressure - Part 1: Solubility of hydrocarbons in dense CO2, SPE 14149. (1997).

DOI: 10.2118/14149-pa

Google Scholar

[21] A. Harouaka, B. Trentham, S. Melzer, Long overlooked residual oil zones are brought to the limelight. SPE 167209 (2013).

DOI: 10.2118/167209-ms

Google Scholar

[22] S. Rassenfoss, Carbon dioxide may offer an unconventional EOR option, JPT, (2), (2014).

DOI: 10.2118/0214-0052-jpt

Google Scholar

[23] D. Abdallah, Impact of asphaltenes deposition on completion design for CO2 pilot in on onshore Abu Dhabi fields", SPE 162190. (2012).

DOI: 10.2118/162190-ms

Google Scholar

[24] W. Li, D. S. Schechter, Using polymer alternating gas to maximize CO2 flooding performance. SPE 169942 (2014).

DOI: 10.2118/spe-169942-ms

Google Scholar