Turbulence Model Evaluation for Numerical Modelling of Turbulent Flow and Heat Transfer of Nanofluids

Article Preview

Abstract:

In this work, Nusselt number and friction factor are calculated numerically for turbulent pipe flow (Reynolds number between 6000 and 12000) with constant heat flux boundary condition using nanofluids. The nanofluid is modelled with the single-phase approach and the simulation results are compared with experimental data. Ethylene glycol and water, 60:40 EG/W mass ratio, as base fluid and SiO2 nanoparticles are used as nanofluid with particle volume concentrations ranging from 0% to 10%. A prior turbulence model evaluation of k-ε-, k-ω- and k-ω-SST-model revealed substantial deviations between the tested models and resulted in applying the k-ω-SST-model for the simulation. Nusselt number predictions for the nanofluid are in agreement with experimental results and a conventional single-phase correlation. The mean deviation is in the range of 5%. Friction factor values show a mean deviation of 1.5% to a conventional single-phase correlation, however, they differ considerably from the nanofluid experimental data.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

165-180

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Stephen US Choi and JA Eastman. Enhancing thermal conductivity of fluids with nanoparticles. Tech. rep. Argonne National Lab., IL (United States), (1995).

Google Scholar

[2] Sidi El Bécaye Maïga et al. Heat transfer enhancement by using nanofluids in forced convection flows,. In: International Journal of Heat and Fluid Flow 26. 4 (2005), pp.530-546.

DOI: 10.1016/j.ijheatfluidflow.2005.02.004

Google Scholar

[3] JM Wu and Jiyun Zhao. A review of nanofluid heat transfer and critical heat flux enhancemen- Research gap to engineering application,. In: Progress in Nuclear Energy 66 (2013), pp.13-24.

DOI: 10.1016/j.pnucene.2013.03.009

Google Scholar

[4] Gabriela Huminic and Angel Huminic. Application of nanofluids in heat exchangers: a review,. In: Renewable and Sustainable Energy Reviews 16. 8 (2012), pp.5625-5638.

DOI: 10.1016/j.rser.2012.05.023

Google Scholar

[5] Devdatta P Kulkarni, Debendra K Das, and Ravikanth S Vajjha. Application of nanofluids in heating buildings and reducing pollution,. In: Applied Energy 86. 12 (2009), pp.2566-2573.

DOI: 10.1016/j.apenergy.2009.03.021

Google Scholar

[6] Todd P Otanicar et al. Nanofluid-based direct absorption solar collector,. In: Journal of renewable and sustainable energy 2. 3 (2010), p.033102.

Google Scholar

[7] WP Jones and BEi Launder. The prediction of laminarization with a two-equation model of turbulence,. In: International journal of heat and mass transfer 15. 2 (1972), pp.301-314.

DOI: 10.1016/0017-9310(72)90076-2

Google Scholar

[8] Praveen K Namburu et al. Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties,. In: International Journal of Thermal Sciences 48. 2 (2009), pp.290-302.

DOI: 10.1016/j.ijthermalsci.2008.01.001

Google Scholar

[9] Goutam Saha and Manosh C Paul. Numerical analysis of the heat transfer behaviour of water based Al 2 O 3 and TiO 2 nanofluids in a circular pipe under the turbulent flow condition,. In: International Communications in Heat and Mass Transfer 56 (2014).

DOI: 10.1016/j.icheatmasstransfer.2014.06.008

Google Scholar

[10] Sidi El Bécaye Maïga et al. Heat transfer behaviours of nanofluids in a uniformly heated tube,. In: Superlattices and Microstructures 35. 3 (2004), pp.543-557.

DOI: 10.1016/j.spmi.2003.09.012

Google Scholar

[11] R Lotfi, Y Saboohi, and AM Rashidi. Numerical study of forced convective heat transfer of nanofluids: comparison of different approaches,. In: International Communications in Heat and Mass Transfer 37. 1 (2010), pp.74-78.

DOI: 10.1016/j.icheatmasstransfer.2009.07.013

Google Scholar

[12] SS Thakre and JB Joshi. CFD modeling of heat transfer in turbulent pipe flows,. In: AIChE journal 46. 9 (2000), pp.1798-1812.

DOI: 10.1002/aic.690460909

Google Scholar

[13] BE Launder and BI Sharma. Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc,. In: Letters in heat and mass transfer 1. 2 (1974), pp.131-137.

DOI: 10.1016/0094-4548(74)90150-7

Google Scholar

[14] David C Wilcox. Reassessment of the scale-determining equation for advanced turbulence models,. In: AIAA journal 26. 11 (1988), pp.1299-1310.

DOI: 10.2514/3.10041

Google Scholar

[15] Florian R Menter. Two-equation eddy-viscosity turbulence models for engineering applications,. In: AIAA journal 32. 8 (1994), pp.1598-1605.

DOI: 10.2514/3.12149

Google Scholar

[16] Bock Choon Pak and Young I Cho. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles,. In: Experimental Heat Transfer an International Journal 11. 2 (1998), pp.151-170.

DOI: 10.1080/08916159808946559

Google Scholar

[17] Yimin Xuan and Qiang Li. Investigation on convective heat transfer and flow features of nanofluids,. In: Journal of Heat transfer 125. 1 (2003), pp.151-155.

DOI: 10.1115/1.1532008

Google Scholar

[18] Yimin Xuan and Qiang Li. Heat transfer enhancement of nanofluids,. In: International Journal of Heat and Fluid Flow 21. 1 (2000), pp.58-64.

DOI: 10.1016/s0142-727x(99)00067-3

Google Scholar

[19] M Rostamani et al. Numerical study of turbulent forced convection flow of nanofluids in a long horizontal duct considering variable properties,. In: International Communications in Heat and Mass Transfer 37. 10 (2010), pp.1426-1431.

DOI: 10.1016/j.icheatmasstransfer.2010.08.007

Google Scholar

[20] A Kamyar, R Saidur, and M Hasanuzzaman. Application of computational fluid dynamics (CFD) for nanofluids,. In: International Journal of Heat and Mass Transfer 55. 15 (2012), pp.4104-4115.

DOI: 10.1016/j.ijheatmasstransfer.2012.03.052

Google Scholar

[21] M Haghshenas Fard, M Nasr Esfahany, and MR Talaie. Numerical study of convective heat transfer of nanofluids in a circular tube two-phase model versus single-phase model,. In: International Communications in Heat and Mass Transfer 37. 1 (2010).

DOI: 10.1016/j.icheatmasstransfer.2009.08.003

Google Scholar

[22] Vincenzo Bianco, Oronzio Manca, and Sergio Nardini. Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube,. In: International Journal of Thermal Sciences 50. 3 (2011), pp.341-349.

DOI: 10.1016/j.ijthermalsci.2010.03.008

Google Scholar

[23] M Akbari, N Galanis, and A Behzadmehr. Comparative assessment of single and two-phase models for numerical studies of nanofluid turbulent forced convection,. In: International Journal of Heat and Fluid Flow 37 (2012), pp.136-146.

DOI: 10.1016/j.ijheatfluidflow.2012.05.005

Google Scholar

[24] Ravikanth S Vajjha, Debendra K Das, and Devdatta P Kulkarni. Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids,. In: International Journal of Heat and Mass Transfer 53. 21 (2010).

DOI: 10.1016/j.ijheatmasstransfer.2010.06.032

Google Scholar

[25] PK Namburu et al. Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids,. In: Micro & Nano Letters, IET 2. 3 (2007), pp.67-71.

DOI: 10.1049/mnl:20070037

Google Scholar

[26] PG Huang, JE Bardina, and TJ Coakley. Turbulence Modeling Validation, Testing, and Development,. In: NASA Technical Memorandum 110446 (1997).

Google Scholar

[27] David C. Wilcox. Turbulence Modeling for CFD. DCW Industries Inc., (1993).

Google Scholar

[28] William M Kays. Turbulent Prandtl number-Where are we?, In: Journal of Heat Transfer 116. 2 (1994), pp.284-295.

DOI: 10.1115/1.2911398

Google Scholar

[29] JP Abraham, EM Sparrow, and JCK Tong. Heat transfer in all pipe flow regimes: laminar, transitional/intermittent, and turbulent,. In: International Journal of Heat and Mass Transfer 52. 3 (2009), pp.557-563.

DOI: 10.1016/j.ijheatmasstransfer.2008.07.009

Google Scholar

[30] Chiranth Srinivasan and Dimitrios V Papavassiliou. Prediction of the turbulent Prandtl number in wall flows with Lagrangian simulations,. In: Industrial & Engineering Chemistry Research 50. 15 (2010), pp.8881-8891.

DOI: 10.1021/ie1019497

Google Scholar

[31] DB Spalding. A single formula for the "law of the wall",. In: Journal of Applied Mechanics 28. 3 (1961), pp.455-458.

Google Scholar

[32] F Menter and T Esch. Elements of industrial heat transfer predictions,. In: 16th Brazilian Congress of Mechanical Engineering (COBEM). 2001, pp.26-30.

Google Scholar

[33] Ravikanth S Vajjha and Debendra K Das. Measurements of Thermophysical Properties of Nanofluids and Computation of Heat Transfer Characteristics. LAP Lambert Academic Publishing, (2010).

Google Scholar

[34] Ravikanth S Vajjha and Debendra K Das. A review and analysis on influence of temperature and concentration of nanofluids on thermophysical properties, heat transfer and pumping power,. In: International Journal of Heat and Mass Transfer 55. 15 (2012).

DOI: 10.1016/j.ijheatmasstransfer.2012.03.048

Google Scholar

[35] Bhaskar C Sahoo et al. Measurement of the thermal conductivity of silicon dioxide nanofluid and development of correlations,. In: Journal of Nanotechnology in Engineering and Medicine 3. 4 (2012), p.041006.

Google Scholar

[36] Junemoo Koo and Clement Kleinstreuer. A new thermal conductivity model for nanofluids,. In: Journal of Nanoparticle Research 6. 6 (2004), pp.577-588.

DOI: 10.1007/s11051-004-3170-5

Google Scholar

[37] Ravikanth S Vajjha and Debendra K Das. Specific heat measurement of three nanofluids and development of new correlations,. In: Journal of heat transfer 131. 7 (2009), p.071601.

DOI: 10.1115/1.3090813

Google Scholar

[38] FP Incropera et al. Fundamentals of heat and mass transfer. John Wiley & Sons, Inc, (2007).

Google Scholar

[39] ASHRAE Handbook. Fundamentals. American Society of Heating, Refrigerating and Air Conditioning Engineers, Atlanta, (2005).

Google Scholar

[40] RS Vajjha, DK Das, and BM Mahagaonkar. Density measurement of different nanofluids and their comparison with theory,. In: Petroleum Science and Technology 27. 6 (2009), pp.612-624.

DOI: 10.1080/10916460701857714

Google Scholar

[41] Herbert Oertel et al. Prandtl-Führer durch die Strömungslehre: Grundlagen und Phänomene. Springer Vieweg, (2012).

DOI: 10.1007/978-3-8348-2315-1

Google Scholar

[42] Volker Gnielinski. Neue Gleichungen für den Wärme-und den Stoffübergang in turbulent durchströmten Rohren und Kanälen,. In: Forschung im Ingenieurwesen A 41. 1 (1975), pp.8-16.

DOI: 10.1007/bf02559682

Google Scholar

[43] Adrian Bejan and Allan D Kraus. Heat transfer handbook. Vol. 1. John Wiley & Sons, (2003).

Google Scholar

[44] Klaus Gersten and Heinz Herwig. Strömungsmechanik. Vieweg, Braunschweig, (1992).

Google Scholar

[45] JGM Eggels et al. Direct numerical simulation of turbulent pipe flow,. In: Applied Scientific Research 51. 1-2 (1993), pp.319-324.

Google Scholar

[46] L Redjem-Saad, M Ould-Rouiss, and G Lauriat. Direct numerical simulation of turbulent heat transfer in pipe flows: Effect of Prandtl number,. In: International Journal of Heat and Fluid Flow 28. 5 (2007), pp.847-861.

DOI: 10.1016/j.ijheatfluidflow.2007.02.003

Google Scholar

[47] Georgi Kalitzin et al. Near-wall behavior of RANS turbulence models and implications for wall functions,. In: Journal of Computational Physics 204. 1 (2005), pp.265-291.

DOI: 10.1016/j.jcp.2004.10.018

Google Scholar

[48] CM Hrenya et al. Comparison of low Reynolds number k-ε turbulence models in predicting fully developed pipe flow,. In: Chemical Engineering Science 50. 12 (1995), p.1923-(1941).

DOI: 10.1016/0009-2509(95)00035-4

Google Scholar

[49] A Mathur and S He. Performance and implementation of the Launder-Sharma low-Reynolds number turbulence model,. In: Computers & Fluids 79 (2013), pp.134-139.

DOI: 10.1016/j.compfluid.2013.02.020

Google Scholar

[50] Virendra C Patel, Wolfgang Rodi, and Georg Scheuerer. Turbulence models for near-wall and low Reynolds number flows-a review,. In: AIAA journal 23. 9 (1985), pp.1308-1319.

DOI: 10.2514/3.9086

Google Scholar