[1]
Stephen US Choi and JA Eastman. Enhancing thermal conductivity of fluids with nanoparticles. Tech. rep. Argonne National Lab., IL (United States), (1995).
Google Scholar
[2]
Sidi El Bécaye Maïga et al. Heat transfer enhancement by using nanofluids in forced convection flows,. In: International Journal of Heat and Fluid Flow 26. 4 (2005), pp.530-546.
DOI: 10.1016/j.ijheatfluidflow.2005.02.004
Google Scholar
[3]
JM Wu and Jiyun Zhao. A review of nanofluid heat transfer and critical heat flux enhancemen- Research gap to engineering application,. In: Progress in Nuclear Energy 66 (2013), pp.13-24.
DOI: 10.1016/j.pnucene.2013.03.009
Google Scholar
[4]
Gabriela Huminic and Angel Huminic. Application of nanofluids in heat exchangers: a review,. In: Renewable and Sustainable Energy Reviews 16. 8 (2012), pp.5625-5638.
DOI: 10.1016/j.rser.2012.05.023
Google Scholar
[5]
Devdatta P Kulkarni, Debendra K Das, and Ravikanth S Vajjha. Application of nanofluids in heating buildings and reducing pollution,. In: Applied Energy 86. 12 (2009), pp.2566-2573.
DOI: 10.1016/j.apenergy.2009.03.021
Google Scholar
[6]
Todd P Otanicar et al. Nanofluid-based direct absorption solar collector,. In: Journal of renewable and sustainable energy 2. 3 (2010), p.033102.
Google Scholar
[7]
WP Jones and BEi Launder. The prediction of laminarization with a two-equation model of turbulence,. In: International journal of heat and mass transfer 15. 2 (1972), pp.301-314.
DOI: 10.1016/0017-9310(72)90076-2
Google Scholar
[8]
Praveen K Namburu et al. Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties,. In: International Journal of Thermal Sciences 48. 2 (2009), pp.290-302.
DOI: 10.1016/j.ijthermalsci.2008.01.001
Google Scholar
[9]
Goutam Saha and Manosh C Paul. Numerical analysis of the heat transfer behaviour of water based Al 2 O 3 and TiO 2 nanofluids in a circular pipe under the turbulent flow condition,. In: International Communications in Heat and Mass Transfer 56 (2014).
DOI: 10.1016/j.icheatmasstransfer.2014.06.008
Google Scholar
[10]
Sidi El Bécaye Maïga et al. Heat transfer behaviours of nanofluids in a uniformly heated tube,. In: Superlattices and Microstructures 35. 3 (2004), pp.543-557.
DOI: 10.1016/j.spmi.2003.09.012
Google Scholar
[11]
R Lotfi, Y Saboohi, and AM Rashidi. Numerical study of forced convective heat transfer of nanofluids: comparison of different approaches,. In: International Communications in Heat and Mass Transfer 37. 1 (2010), pp.74-78.
DOI: 10.1016/j.icheatmasstransfer.2009.07.013
Google Scholar
[12]
SS Thakre and JB Joshi. CFD modeling of heat transfer in turbulent pipe flows,. In: AIChE journal 46. 9 (2000), pp.1798-1812.
DOI: 10.1002/aic.690460909
Google Scholar
[13]
BE Launder and BI Sharma. Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc,. In: Letters in heat and mass transfer 1. 2 (1974), pp.131-137.
DOI: 10.1016/0094-4548(74)90150-7
Google Scholar
[14]
David C Wilcox. Reassessment of the scale-determining equation for advanced turbulence models,. In: AIAA journal 26. 11 (1988), pp.1299-1310.
DOI: 10.2514/3.10041
Google Scholar
[15]
Florian R Menter. Two-equation eddy-viscosity turbulence models for engineering applications,. In: AIAA journal 32. 8 (1994), pp.1598-1605.
DOI: 10.2514/3.12149
Google Scholar
[16]
Bock Choon Pak and Young I Cho. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles,. In: Experimental Heat Transfer an International Journal 11. 2 (1998), pp.151-170.
DOI: 10.1080/08916159808946559
Google Scholar
[17]
Yimin Xuan and Qiang Li. Investigation on convective heat transfer and flow features of nanofluids,. In: Journal of Heat transfer 125. 1 (2003), pp.151-155.
DOI: 10.1115/1.1532008
Google Scholar
[18]
Yimin Xuan and Qiang Li. Heat transfer enhancement of nanofluids,. In: International Journal of Heat and Fluid Flow 21. 1 (2000), pp.58-64.
DOI: 10.1016/s0142-727x(99)00067-3
Google Scholar
[19]
M Rostamani et al. Numerical study of turbulent forced convection flow of nanofluids in a long horizontal duct considering variable properties,. In: International Communications in Heat and Mass Transfer 37. 10 (2010), pp.1426-1431.
DOI: 10.1016/j.icheatmasstransfer.2010.08.007
Google Scholar
[20]
A Kamyar, R Saidur, and M Hasanuzzaman. Application of computational fluid dynamics (CFD) for nanofluids,. In: International Journal of Heat and Mass Transfer 55. 15 (2012), pp.4104-4115.
DOI: 10.1016/j.ijheatmasstransfer.2012.03.052
Google Scholar
[21]
M Haghshenas Fard, M Nasr Esfahany, and MR Talaie. Numerical study of convective heat transfer of nanofluids in a circular tube two-phase model versus single-phase model,. In: International Communications in Heat and Mass Transfer 37. 1 (2010).
DOI: 10.1016/j.icheatmasstransfer.2009.08.003
Google Scholar
[22]
Vincenzo Bianco, Oronzio Manca, and Sergio Nardini. Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube,. In: International Journal of Thermal Sciences 50. 3 (2011), pp.341-349.
DOI: 10.1016/j.ijthermalsci.2010.03.008
Google Scholar
[23]
M Akbari, N Galanis, and A Behzadmehr. Comparative assessment of single and two-phase models for numerical studies of nanofluid turbulent forced convection,. In: International Journal of Heat and Fluid Flow 37 (2012), pp.136-146.
DOI: 10.1016/j.ijheatfluidflow.2012.05.005
Google Scholar
[24]
Ravikanth S Vajjha, Debendra K Das, and Devdatta P Kulkarni. Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids,. In: International Journal of Heat and Mass Transfer 53. 21 (2010).
DOI: 10.1016/j.ijheatmasstransfer.2010.06.032
Google Scholar
[25]
PK Namburu et al. Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids,. In: Micro & Nano Letters, IET 2. 3 (2007), pp.67-71.
DOI: 10.1049/mnl:20070037
Google Scholar
[26]
PG Huang, JE Bardina, and TJ Coakley. Turbulence Modeling Validation, Testing, and Development,. In: NASA Technical Memorandum 110446 (1997).
Google Scholar
[27]
David C. Wilcox. Turbulence Modeling for CFD. DCW Industries Inc., (1993).
Google Scholar
[28]
William M Kays. Turbulent Prandtl number-Where are we?, In: Journal of Heat Transfer 116. 2 (1994), pp.284-295.
DOI: 10.1115/1.2911398
Google Scholar
[29]
JP Abraham, EM Sparrow, and JCK Tong. Heat transfer in all pipe flow regimes: laminar, transitional/intermittent, and turbulent,. In: International Journal of Heat and Mass Transfer 52. 3 (2009), pp.557-563.
DOI: 10.1016/j.ijheatmasstransfer.2008.07.009
Google Scholar
[30]
Chiranth Srinivasan and Dimitrios V Papavassiliou. Prediction of the turbulent Prandtl number in wall flows with Lagrangian simulations,. In: Industrial & Engineering Chemistry Research 50. 15 (2010), pp.8881-8891.
DOI: 10.1021/ie1019497
Google Scholar
[31]
DB Spalding. A single formula for the "law of the wall",. In: Journal of Applied Mechanics 28. 3 (1961), pp.455-458.
Google Scholar
[32]
F Menter and T Esch. Elements of industrial heat transfer predictions,. In: 16th Brazilian Congress of Mechanical Engineering (COBEM). 2001, pp.26-30.
Google Scholar
[33]
Ravikanth S Vajjha and Debendra K Das. Measurements of Thermophysical Properties of Nanofluids and Computation of Heat Transfer Characteristics. LAP Lambert Academic Publishing, (2010).
Google Scholar
[34]
Ravikanth S Vajjha and Debendra K Das. A review and analysis on influence of temperature and concentration of nanofluids on thermophysical properties, heat transfer and pumping power,. In: International Journal of Heat and Mass Transfer 55. 15 (2012).
DOI: 10.1016/j.ijheatmasstransfer.2012.03.048
Google Scholar
[35]
Bhaskar C Sahoo et al. Measurement of the thermal conductivity of silicon dioxide nanofluid and development of correlations,. In: Journal of Nanotechnology in Engineering and Medicine 3. 4 (2012), p.041006.
Google Scholar
[36]
Junemoo Koo and Clement Kleinstreuer. A new thermal conductivity model for nanofluids,. In: Journal of Nanoparticle Research 6. 6 (2004), pp.577-588.
DOI: 10.1007/s11051-004-3170-5
Google Scholar
[37]
Ravikanth S Vajjha and Debendra K Das. Specific heat measurement of three nanofluids and development of new correlations,. In: Journal of heat transfer 131. 7 (2009), p.071601.
DOI: 10.1115/1.3090813
Google Scholar
[38]
FP Incropera et al. Fundamentals of heat and mass transfer. John Wiley & Sons, Inc, (2007).
Google Scholar
[39]
ASHRAE Handbook. Fundamentals. American Society of Heating, Refrigerating and Air Conditioning Engineers, Atlanta, (2005).
Google Scholar
[40]
RS Vajjha, DK Das, and BM Mahagaonkar. Density measurement of different nanofluids and their comparison with theory,. In: Petroleum Science and Technology 27. 6 (2009), pp.612-624.
DOI: 10.1080/10916460701857714
Google Scholar
[41]
Herbert Oertel et al. Prandtl-Führer durch die Strömungslehre: Grundlagen und Phänomene. Springer Vieweg, (2012).
DOI: 10.1007/978-3-8348-2315-1
Google Scholar
[42]
Volker Gnielinski. Neue Gleichungen für den Wärme-und den Stoffübergang in turbulent durchströmten Rohren und Kanälen,. In: Forschung im Ingenieurwesen A 41. 1 (1975), pp.8-16.
DOI: 10.1007/bf02559682
Google Scholar
[43]
Adrian Bejan and Allan D Kraus. Heat transfer handbook. Vol. 1. John Wiley & Sons, (2003).
Google Scholar
[44]
Klaus Gersten and Heinz Herwig. Strömungsmechanik. Vieweg, Braunschweig, (1992).
Google Scholar
[45]
JGM Eggels et al. Direct numerical simulation of turbulent pipe flow,. In: Applied Scientific Research 51. 1-2 (1993), pp.319-324.
Google Scholar
[46]
L Redjem-Saad, M Ould-Rouiss, and G Lauriat. Direct numerical simulation of turbulent heat transfer in pipe flows: Effect of Prandtl number,. In: International Journal of Heat and Fluid Flow 28. 5 (2007), pp.847-861.
DOI: 10.1016/j.ijheatfluidflow.2007.02.003
Google Scholar
[47]
Georgi Kalitzin et al. Near-wall behavior of RANS turbulence models and implications for wall functions,. In: Journal of Computational Physics 204. 1 (2005), pp.265-291.
DOI: 10.1016/j.jcp.2004.10.018
Google Scholar
[48]
CM Hrenya et al. Comparison of low Reynolds number k-ε turbulence models in predicting fully developed pipe flow,. In: Chemical Engineering Science 50. 12 (1995), p.1923-(1941).
DOI: 10.1016/0009-2509(95)00035-4
Google Scholar
[49]
A Mathur and S He. Performance and implementation of the Launder-Sharma low-Reynolds number turbulence model,. In: Computers & Fluids 79 (2013), pp.134-139.
DOI: 10.1016/j.compfluid.2013.02.020
Google Scholar
[50]
Virendra C Patel, Wolfgang Rodi, and Georg Scheuerer. Turbulence models for near-wall and low Reynolds number flows-a review,. In: AIAA journal 23. 9 (1985), pp.1308-1319.
DOI: 10.2514/3.9086
Google Scholar