[1]
Saidur R., Leong K.Y., Mohammad H.A.: Review on applications and challenges of nanofluids, Renewable and Sustainable Energy Reviews, Vol. 15, 2011, 1646–1668.
DOI: 10.1016/j.rser.2010.11.035
Google Scholar
[2]
Pak B.C., Cho Y.I.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer 1998; 11(2): 151–70.
DOI: 10.1080/08916159808946559
Google Scholar
[3]
Cieśliński J.T., Krygier K.: Free convection of water-Al2O3 nanofluid from horizontal porous coated tube. Key Engineering Materials, Vol. 597, 2014, pp.15-20; online available since 2013/Dec/13.
DOI: 10.4028/www.scientific.net/kem.597.15
Google Scholar
[4]
Kleinstreuer C., Feng Yu.: Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review, Nanoscale Research Letters 2011, 6: 229.
DOI: 10.1186/1556-276x-6-229
Google Scholar
[5]
Chandrasekar M., Suresh S.: A Review on the Mechanisms of Heat Transport in Nanofluids, Heat Transfer Engineering, http: /dx. doi. org/10. 1080/01457630902972744.
Google Scholar
[6]
Buongiorno J. et al.: A benchmark study on the thermal conductivity of nanofluids. Journal of Applied Physics 2009, 106, 094312-1-094312-14.
Google Scholar
[7]
Wen D. and Ding Y.: Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions Int. J. Heat and Mass Transfer 47 (2004) 5181–5188.
DOI: 10.1016/j.ijheatmasstransfer.2004.07.012
Google Scholar
[8]
Kabelac S., Kuhnke J.F.: Heat transfer mechanisms in nanofluids – experiments and theory. Proc. 13th Heat Transfer Conf., KN-11, Sydney (2006).
DOI: 10.1615/ihtc13.p30.110
Google Scholar
[9]
Heris S.Z., Etemad S. Gh., Isfahany M. Nasr: Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int. Comm. Heat and Mass Transfer, vol. 33, p.529–535, (2006).
DOI: 10.1016/j.icheatmasstransfer.2006.01.005
Google Scholar
[10]
Lee J., Mudawar I.: Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels, Int. J. Heat and Mass Transfer 50 (2007) 452–46.
DOI: 10.1016/j.ijheatmasstransfer.2006.08.001
Google Scholar
[11]
Williams W., Buongiorno J., Hu L. -W.: Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes, Journal of Heat Transfer 2008, Vol. 130, pp.1-7.
DOI: 10.1115/1.2818775
Google Scholar
[12]
Nasiri M., Etemad S. Gh., Bagheri R.: Experimental heat transfer of nanofluid through an annular duct. Int. Communications in Heat and Mass Transfer, vol. 38, p.958–963, (2011).
DOI: 10.1016/j.icheatmasstransfer.2011.04.011
Google Scholar
[13]
Abdulhassan Abd. K., Sattar Al-Jabair, Khalid Sultan: Experimental Investigation of Heat Transfer and Flow of Nano Fluids in Horizontal Circular Tube. World Academy of Science, Engineering and Technology, vol. 61, (2012).
Google Scholar
[14]
Kalteh M., Abbassi A., Saffar-Avval M., Frijns A., Darhuber A., Karting J.: Experimental and numerical investigation of nanofluid forced convection inside a wide microchannel heat sink. Applied Thermal Engineering vol. 36, pp.260-268, (2012).
DOI: 10.1016/j.applthermaleng.2011.10.023
Google Scholar
[15]
Khedkar R.S., Sonawane S.S., Wasewar K.L.: Water to nanofluids heat transfer in concentric tube heat exchanger: Experimental study. Procedia Engineering, vol. 51, p.318 – 323, (2013).
DOI: 10.1016/j.proeng.2013.01.043
Google Scholar
[16]
Cieśliński J.T., Kaczmarczyk T.: Pool boiling of water-Al2O3 and water-Cu nanofluids on horizontal smooth tubes. Nanoscale Research Letters, 2011, doi: 10. 1186/1556-276X-6-220.
DOI: 10.1186/1556-276x-6-220
Google Scholar
[17]
Pudlik W.: Heat transfer and heat exchangers, 5th Edition, pdf, Digital Library of GUT, 2012 (in Polish).
Google Scholar
[18]
Cieśliński J.T., Krygier K., Smoleń S.: Wpływ koncentracji nanocząstek na własności termofizyczne nanocieczy woda-Al2O3 i woda-TiO2. W: Termodynamika i wymiana ciepła w badaniach procesów cieplno-przepływowych, ss. 87 – 108, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów (2014).
Google Scholar