Influence of Nanoparticle Concentration on Convective Heat Transfer of Water-Al2O3 Nanofluids inside Horizontal Tubes

Article Preview

Abstract:

In contrast to the very rich literature on modeling and the determination of the thermal conductivity of nanofluids the forced convection data are limited. This work presents preliminary results of the experimental investigation of the forced convection heat transfer of water-Al2O3 nanofluids inside stainless steel tube with 8 mm internal diameter and 2000 mm length. Nanoparticles were tested at the concentrations of 0.01%, 0.1%, 1% and 5% by weight and the Reynolds number range encompasses laminar as well as turbulent flows.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

208-215

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Saidur R., Leong K.Y., Mohammad H.A.: Review on applications and challenges of nanofluids, Renewable and Sustainable Energy Reviews, Vol. 15, 2011, 1646–1668.

DOI: 10.1016/j.rser.2010.11.035

Google Scholar

[2] Pak B.C., Cho Y.I.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer 1998; 11(2): 151–70.

DOI: 10.1080/08916159808946559

Google Scholar

[3] Cieśliński J.T., Krygier K.: Free convection of water-Al2O3 nanofluid from horizontal porous coated tube. Key Engineering Materials, Vol. 597, 2014, pp.15-20; online available since 2013/Dec/13.

DOI: 10.4028/www.scientific.net/kem.597.15

Google Scholar

[4] Kleinstreuer C., Feng Yu.: Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review, Nanoscale Research Letters 2011, 6: 229.

DOI: 10.1186/1556-276x-6-229

Google Scholar

[5] Chandrasekar M., Suresh S.: A Review on the Mechanisms of Heat Transport in Nanofluids, Heat Transfer Engineering, http: /dx. doi. org/10. 1080/01457630902972744.

Google Scholar

[6] Buongiorno J. et al.: A benchmark study on the thermal conductivity of nanofluids. Journal of Applied Physics 2009, 106, 094312-1-094312-14.

Google Scholar

[7] Wen D. and Ding Y.: Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions Int. J. Heat and Mass Transfer 47 (2004) 5181–5188.

DOI: 10.1016/j.ijheatmasstransfer.2004.07.012

Google Scholar

[8] Kabelac S., Kuhnke J.F.: Heat transfer mechanisms in nanofluids – experiments and theory. Proc. 13th Heat Transfer Conf., KN-11, Sydney (2006).

DOI: 10.1615/ihtc13.p30.110

Google Scholar

[9] Heris S.Z., Etemad S. Gh., Isfahany M. Nasr: Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int. Comm. Heat and Mass Transfer, vol. 33, p.529–535, (2006).

DOI: 10.1016/j.icheatmasstransfer.2006.01.005

Google Scholar

[10] Lee J., Mudawar I.: Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels, Int. J. Heat and Mass Transfer 50 (2007) 452–46.

DOI: 10.1016/j.ijheatmasstransfer.2006.08.001

Google Scholar

[11] Williams W., Buongiorno J., Hu L. -W.: Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes, Journal of Heat Transfer 2008, Vol. 130, pp.1-7.

DOI: 10.1115/1.2818775

Google Scholar

[12] Nasiri M., Etemad S. Gh., Bagheri R.: Experimental heat transfer of nanofluid through an annular duct. Int. Communications in Heat and Mass Transfer, vol. 38, p.958–963, (2011).

DOI: 10.1016/j.icheatmasstransfer.2011.04.011

Google Scholar

[13] Abdulhassan Abd. K., Sattar Al-Jabair, Khalid Sultan: Experimental Investigation of Heat Transfer and Flow of Nano Fluids in Horizontal Circular Tube. World Academy of Science, Engineering and Technology, vol. 61, (2012).

Google Scholar

[14] Kalteh M., Abbassi A., Saffar-Avval M., Frijns A., Darhuber A., Karting J.: Experimental and numerical investigation of nanofluid forced convection inside a wide microchannel heat sink. Applied Thermal Engineering vol. 36, pp.260-268, (2012).

DOI: 10.1016/j.applthermaleng.2011.10.023

Google Scholar

[15] Khedkar R.S., Sonawane S.S., Wasewar K.L.: Water to nanofluids heat transfer in concentric tube heat exchanger: Experimental study. Procedia Engineering, vol. 51, p.318 – 323, (2013).

DOI: 10.1016/j.proeng.2013.01.043

Google Scholar

[16] Cieśliński J.T., Kaczmarczyk T.: Pool boiling of water-Al2O3 and water-Cu nanofluids on horizontal smooth tubes. Nanoscale Research Letters, 2011, doi: 10. 1186/1556-276X-6-220.

DOI: 10.1186/1556-276x-6-220

Google Scholar

[17] Pudlik W.: Heat transfer and heat exchangers, 5th Edition, pdf, Digital Library of GUT, 2012 (in Polish).

Google Scholar

[18] Cieśliński J.T., Krygier K., Smoleń S.: Wpływ koncentracji nanocząstek na własności termofizyczne nanocieczy woda-Al2O3 i woda-TiO2. W: Termodynamika i wymiana ciepła w badaniach procesów cieplno-przepływowych, ss. 87 – 108, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów (2014).

Google Scholar