Coil Heat Exchanger with the Nanofluid Filled Buffer Layer

Article Preview

Abstract:

The paper presents the preliminary design of the special heat exchanger. The device under consideration is the kind of immersed coil heat exchangers. It consists of three vertical coils: two coils are standard, water is used as a heating medium; one coil is filled by the refrigerant R134a which transfers the waste heat from refrigeration and air conditioning system during the boiling processes. In order to prevent the possible refrigerant leakage, the special buffer layer filled with the nanofluid is mounted in the Freon coil. Thermophysical properties of the nanofluid cause the intensification of the heat transfer through the buffer layer and the same increase of the heat transfer rate. Calculations of thermal power were made. Correlations of heat transfer coefficients in curved tubes, pressure drop correlations for flow through helical coil tubes and correlations describing the heat transfer in the buffer layer, were applied. Results of the calculations indicate of the influence of of Freon coil on the exchanger heat transfer rate. Heat power of Freon coil is about 7 – 25% of water coil thermal power. Thus, the waste heat applied significantly increases the exchanger heat transfer rate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

223-231

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Prabhanjan D. G., Raghavan G. S. V., Rennie T. J.: Comparison of heat transfer rates between a straight tube heat exchanger and a helically coiled heat exchanger. Int. Comm. Heat Mass Transfer, Vol. 29, No 2, 185-191, (2002).

DOI: 10.1016/s0735-1933(02)00309-3

Google Scholar

[2] Zachár A.: Analysis of coiled-tube heat exchangers to improve heat transfer rate with spirally corrugated wall. International Journal of Heat and Mass Transfer, Vol. 53, 3928-3939, (2010).

DOI: 10.1016/j.ijheatmasstransfer.2010.05.011

Google Scholar

[3] Genić S. B., Jaćimović B. M., Jarić M. S. Budimir N. J., Dobrnjac M. M. : Research on the shell-side thermal performances of heat exchangers with helical tube coils. International Journal of Heat and Mass Transfer, Vol. 55, 4295-4300, (2012).

DOI: 10.1016/j.ijheatmasstransfer.2012.03.074

Google Scholar

[4] Logie W.: Immersed Coil Heat Exchangers. Solartechnik Prüfung Forschung, October 22, 1-11, (2007).

Google Scholar

[5] Ali M. E. : Laminar natural convection from constant heat flux helcal coiled tubes. International Journal of Heat and Mass Transfer, Vol. 41, No. 14, 2175-2182, (1998).

DOI: 10.1016/s0017-9310(97)00322-0

Google Scholar

[6] Prabhanjan D. G., Rennie T. J., G., Raghavan G. S. V.: Natural convection heat transfer from helical coiled tubes. International Journal of Thermal Sciences, Vol. 43, 359-365, (2004).

DOI: 10.1016/j.ijthermalsci.2003.08.005

Google Scholar

[7] Ali M. E.: Free convection heat transfer from the outer surface of vertically oriented helical coils in glycerol-water solution. Heat and Mass Transfer, Vol. 40, 615-620, (2004).

DOI: 10.1007/s00231-003-0431-2

Google Scholar

[8] Ali M. E.: Natural convection heat transfer from vertical helical coils in oil. Heat Transfer Engineering, Vol. 27, No. 3, 79-85, (2006).

DOI: 10.1080/01457630500458617

Google Scholar

[9] Ali S.: Pressure drop correlations for flow through regular helical coil tubes. Fluid Dynamics Research, Vol. 28, 295-310, (2001).

DOI: 10.1016/s0169-5983(00)00034-4

Google Scholar

[10] Wiśniewski S., Wiśniewski T. S. : Wymiana ciepła. Wydawnictwa Naukowo-Techniczne, Warszawa (1994).

Google Scholar

[11] Niezgoda-Żelasko B., Zalewski W. : Chłodnicze i klimatyzacyjne wymienniki ciepła. Wydawnictwo Politechniki Krakowskiej, Kraków (2013).

Google Scholar

[12] Berkel H., Mitra N. K., Fiebig M. : Experimentelle Untersuchung des Wärmeüberganges durch freie Konvektion an waagerechten Rippenrohren in einem zylindrischen Behälter. Wärme und Stoffübertragung, Vol. 18, 167-173, (1984).

DOI: 10.1007/bf01466348

Google Scholar

[13] Staniszewski B. : Wymiana ciepła. Podstawy teoretyczne. Państwowe Wydawnictwo Naukowe. Warszawa (1979).

Google Scholar

[14] Haaland S. E. : Simple and Explicit formulas for the friction factor in turbulent pipe flow. Journal of Fluids Engineering, Vol. 105, 89-90, (1983).

DOI: 10.1115/1.3240948

Google Scholar

[15] Wetly J. R., Wicks C. E., Wilson R. E., Rorrer G. L. : Fundamentals of momentum, heat and mass transfer. Wiley, (2008).

Google Scholar