Possibilities of the Use of the Electrolytic Technique for the Investigations of Mass/Heat Transfer in Nanofluid

Article Preview

Abstract:

In the paper the author presents the possibilities of the application of the electrolytic technique for the investigation of heat transfer coefficients in channels with nanofluids. The electrolytic technique called the limiting current method enables to obtain mass transfer coefficients on the basis of the electrochemical processes and the laws governing these physical phenomena. The exemplary graph presenting the limiting currents values resulting from the experiment is shown in Fig. 1. These are the voltammograms at different Reynolds numbers and the ion concentration Cb. Heat transfer coefficients can be calculated using the correlations describing the analogy of mass and heat transfer processes. Some cases of the possible application of the electrolytic technique and factors influencing the mass transfer experiment including the state of the electroactive surface, change in ion concentration and thickness of the diffusion layer are discussed in [1]. In this work the author focused on the mass transfer experiment with the application of the nanofluid. Special properties of the nanofluid should be taken into account in the investigations. The paper presents the preliminary results of the experiment with nanofluid in the annular channel.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

216-222

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Smusz, R., Wilk, J.: Coil heat exchanger with the nanofluid filled buffer layer. 4th International Conference, Low Temperature and Waste Heat Use in Energy Supply Systems, Bremen (2015).

DOI: 10.4028/www.scientific.net/amm.831.223

Google Scholar

[2] Cieśliński, J.T., Krygier, K. & Smoleń, S.: Wpływ koncentracji nanocząstek na właściwości termofizyczne nanocieczy woda-Al2O3 i woda-TiO2. Termodynamika i wymiana ciepła w badaniach procesów cieplno-przepływowych, Rzeszów (2014).

DOI: 10.7862/rm.2016.4

Google Scholar

[3] Wilk, J.: Convective mass/heat transfer in the entrance region of the short circular minichanel. Experimental Thermal and Fluid Science, Vol 38 (2012) 107-114.

DOI: 10.1016/j.expthermflusci.2011.11.013

Google Scholar

[4] Wilk, J.: A review of measurements of the mass transfer in minichannels using the limiting current technique. Experimental Thermal and Fluid Science, Vol. 57 (2014) 242-249.

DOI: 10.1016/j.expthermflusci.2014.04.019

Google Scholar

[5] Beiki, H., Esfahany, M. N. & Etesami, N.: Laminar forced convective mass transfer of γ-Al2O3/electrolyte nanofluid in a circular tube. International Journal of Thermal Sciences Vol. 64 (2013) 251-256.

DOI: 10.1016/j.ijthermalsci.2012.09.004

Google Scholar

[6] Beiki, H., Esfahany, M. N., Etesami, N.: Turbulent mass transfer of Al2O3 and TiO2 electrolyte nanofluids in circular tube. Microfluid Nanofluid Springer-Verlag (2013).

DOI: 10.1007/s10404-013-1167-z

Google Scholar

[7] Wen, D., Ding Y.: Experimental investigation into convective heat transfer of nanofliuds at the entrance region under laminar flow conditions. International Journal of Heat and Mass Transfer, Vol. 47 (2004) 5181-5188.

DOI: 10.1016/j.ijheatmasstransfer.2004.07.012

Google Scholar

[8] Rea, U., Mckrell, T. & Hu, L., Buongiorno, J.: Laminar convective heat transfer and viscous pressure loss of alumina-water and zircona-water nanofluids. International Journal of Heat and Mass Transfer, Vol. 52 (2009)2042-(2048).

DOI: 10.1016/j.ijheatmasstransfer.2008.10.025

Google Scholar

[9] Kakaç, S., Pramuanjaroenkij, A.: Review of convective heat transfer enhancement nanofluids. International Journal of Heat and Mass Transfer, Vol. 52 (2009) 3187-3196.

DOI: 10.1016/j.ijheatmasstransfer.2009.02.006

Google Scholar