Morphology and Mechanical Properties of Poly (Lactic Acid) and Acrylonitrile-Butadiene Rubber Blends with Organoclay

Article Preview

Abstract:

The effects of the montmorillonite clay surface modified with 25-30 wt% of methyl dihydroxyethyl hydrogenated tallow ammonium (Clay-MHA) on morphology and mechanical properties of poly(lactic acid) (PLA)/acrylonitrile-butadiene rubber copolymer (NBR)/Clay-MHA composites were investigated. The composites of blends of PLA/NBR with Clay-MHA were prepared by melt mixing in an internal mixer and molded by compression molding. The ratio of PLA and NBR was 80/20 by weight and the Clay-MHA content was 1, 3, 5 and 7 phr. The results showed Young’s modulus and stress at break of the composites increased with increasing Clay-MHA content. While the tensile strength and strain at break of the composites decreased with increasing Clay-MHA content. Scanning electron microscopy analysis showed that the addition of Clay-MHA could improve the miscibility of PLA and NBR to be homogeneous blends and the pore in polymer blends was disappeared.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

284-288

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Yousfi, J. Soulestin, B. Vergnes, M.F. Lacrampe and P. Krawczak, Compatibilization of immiscible polymer blends by organoclay: Effect of nanofiller or organo-modifier?, Macromol. Mater. Eng. 298 (2013) 757-770.

DOI: 10.1002/mame.201200138

Google Scholar

[2] Y. Li and H. Shimizu, Co-continuous polyamide 6 (PA6)/acrylonitrile-butadiene-styrene (ABS) nanocomposites, Macromol. Rapid Commun. 26 (2005) 710-715.

DOI: 10.1002/marc.200400654

Google Scholar

[3] A.K. Dhibar, J.K. Kim and B.B. Khatua, Cocontinuous phase morphology of asymmetric compositions of polypropylene/high-density polyethylene blend by the addition of clay, J. Appl. Polym. Sci. 119 (2011) 3080-3092.

DOI: 10.1002/app.33057

Google Scholar

[4] S. Mallick and B.B. Khatua, Morphology and properties of nylon6 and high density polyethylene blends in absence and presence of nanoclay, J. Appl. Polym. Sci. 121 (2011) 359-368.

DOI: 10.1002/app.33580

Google Scholar

[5] S.S. Ray, J. Bandyopadhyay and M. Bousmina, Effect of organoclay on the morphology and properties of poly(propylene)/poly[(butylene succinate)-co-adipate] blends, Macromol. Mater. Eng. 292 (2007) 729-747.

DOI: 10.1002/mame.200700029

Google Scholar

[6] M.H. Lee, C.H. Dan, J.H. Kim, J. Cha, S. Kim, Y. Hwang and C.H. Lee, Effect of clay on the morphology and properties of PMMA/poly(styrene-co-acrylonitrile)/clay nanocomposites prepared by melt mixing, Polymer 47 (2006) 4359-4369.

DOI: 10.1016/j.polymer.2006.04.003

Google Scholar

[7] S. Mallick, A.K. Dhibar and B.B. Khatua, Effect of nanoclay on the morphology and properties of poly(methyl methacrylate)/high-density polyethylene blends, J. Appl. Polym. Sci. 116 (2010) 1010- 1020.

DOI: 10.1002/app.31444

Google Scholar

[8] A.K. Das, S. Suin, N.K. Shrivastava, S. Maiti, J.K. Mishra and B.B. Khatua, Effect of nanoclay on the morphology and properties of acrylonitrile butadiene styrene toughened polyoxymethylene (POM)/clay nanocomposites, Polym. Compos. 35 (2014).

DOI: 10.1002/pc.22659

Google Scholar

[9] N.I. Akos, M.U. Wahit, R. Mohamed and A.A. Yussuf, Preparation, characterization, and mechanical properties of poly( e-caprolactone)/polylactic acid blend composites, Polym. Compos. 34 (2013) 763–768.

DOI: 10.1002/pc.22488

Google Scholar

[10] M.M.F. Ferrarezi, M. de Oliveira Taipina, L.C.E. da Silva and M. do Carmo Gonçalves, Poly(ethylene glycol) as a compatibilizer for poly(lactic acid)/thermoplastic starch blends, J. Polym. Environ. 21 (2013) 151-159.

DOI: 10.1007/s10924-012-0480-z

Google Scholar

[11] P. Juntuek, C. Ruksakulpiwat, P. Chumsamrong and Y. Ruksakulpiwat, Effect of glycidyl methacrylate-grafted natural rubber on physical properties of polylactic acid and natural rubber blends, J. Appl. Polym. Sci. 125 (2012) 745-754.

DOI: 10.1002/app.36263

Google Scholar

[12] R. Jaratrotkamjorn, C. Khaokong and V. Tanrattanakul, Toughness enhancement of poly(lactic acid) by melt blending with natural rubber, J. Appl. Polym. Sci. 124 (2012) 5027-5036.

DOI: 10.1002/app.35617

Google Scholar

[13] V. Tanrattanakul and P. Bunkaew, Effect of different plasticizers on the properties of bio-based thermoplastic elastomer containing poly(lactic acid) and natural rubber, Express Polym. Lett. 8 (2014) 387-396.

DOI: 10.3144/expresspolymlett.2014.43

Google Scholar

[14] P. Choudhary, S. Mohanty, S.K. Nayak and L. Unnikrishnan, Poly(L-lactide)/ polypropylene blends: Evaluation of mechanical, thermal, and morphological characteristics, J. Appl. Polym. Sci. 121 (2011) 3223-3237.

DOI: 10.1002/app.33866

Google Scholar

[15] S.T. Bee, C.T. Ratnam, L.T. Sin, T.T. Tee, W.K. Wong, J.X. Lee and A.R. Rahmat, Effects of electron beam irradiation on the structural properties of polylactic acid/polyethylene blends, Nucl. Instr. Meth. Phys. Res. B 334 (2014) 18-27.

DOI: 10.1016/j.nimb.2014.04.024

Google Scholar

[16] M. Bijarimi, S. Ahmad and R. Rasid, Mechanical, thermal and morphological properties of poly(lactic acid)/natural rubber nanocomposites, J. Reinf. Plast. Comp. 32 (2013) 1656-1667.

DOI: 10.1177/0731684413496487

Google Scholar