Isoconversional Methods for Kinetic Modeling of Kerogen Pyrolysis Using TG Data

Article Preview

Abstract:

The pyrolysis kinetics of the Jordanian Lajjun oil shale kerogen was investigated inside a TGA reactor. Kerogen samples (extracted by mineral digestion) were non-isothermally heated at rates varying from 1 to 50°C/min under 350-550C in N2 atmosphere. Friedman, Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO) models were employed to estimate the kinetic parameters at isoconversional points ranging from 0.1 to 0.9. The value of the calculated apparent activation energy (E) was found to vary with both the employed model and the conversion (x). Using the three models, the calculated increased with from 10 to 30% (low level), and then decreased with from 30 to 60% (medium level). At high level (60 to 90%), however, increased with increase using both KAS and FWO models, while it continuously dropped with increase using Friedman model. The frequency factor (k0) calculated form each model was found to linearly correlate with E. Compared to KAS and FWO models, Friedman' provided a more accurate fit to the experimental data.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

299-307

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F.V. Acholla, W.L. Orr, Pyrite removal from kerogen without altering organic matter: The chromous chloride method, Energy Fuels 7(3) (1993) 406-410.

DOI: 10.1021/ef00039a012

Google Scholar

[2] J.W. Larsen, C.S. Pan, S. Shawver, Effect of demineralization on the macromolecular structure of coals, Energy Fuels 3(5) (1989) 557-561.

DOI: 10.1021/ef00017a004

Google Scholar

[3] H. Chen, B. Li, B. Zhang, The effect of acid treatment on the removal of pyrite in coal, Fuel 78(10) (1999) 1237-1238.

DOI: 10.1016/s0016-2361(99)00039-3

Google Scholar

[4] J.D. Saxby, Isolation of kerogen in sediments by chemical methods, Chem. Geol. 6 (1970) 173-184.

Google Scholar

[5] L. Ballice, Stepwise chemical demineralization of goynuk (Turkey) oil shale and pyrolysis of demineralization products, Ind. Eng. Chem. Res. 45(3) (2006) 906-912.

DOI: 10.1021/ie050751f

Google Scholar

[6] A. Aboulkas, K. El Harfi, Effects of acid treatments on Moroccan Tarfaya oil shale and pyrolysis of oil shale and their kerogen, J. Fuel Chem. Technol. 37(6) (2009) 659-667.

DOI: 10.1016/s1872-5813(10)60013-8

Google Scholar

[7] K. Rajeshwar, The kinetics of the thermal decomposition of Green River oil shale kerogen by non-isothermal thermogravimetry, Thermochim. Acta. 45(3) (1981) 253-263.

DOI: 10.1016/0040-6031(81)85086-1

Google Scholar

[8] M.C. Torrente, M.A. Galan, Kinetics of the thermal decomposition of oil shale from Puertollano (Spain), Fuel 80(3) (2001) 327-334.

DOI: 10.1016/s0016-2361(00)00101-0

Google Scholar

[9] M.V. Kok, Thermal investigation of Seyitomer oil shale, Thermochim. Acta. 369(1-2) (2001) 149- 155.

DOI: 10.1016/s0040-6031(00)00764-4

Google Scholar

[10] A. Karabakan, Y. Yurum, Effect of the mineral matrix in the reactions of oil shales: 1. Pyrolysis reactions of Turkish Göynük and US Green River oil shales, Fuel 77(12) (1998) 1303-1309.

DOI: 10.1016/s0016-2361(98)00045-3

Google Scholar

[11] J.O. Jaber, S.D. Probert, Non-isothermal thermogravimetry and decomposition kinetics of two Jordanian oil shales under different processing conditions, Fuel Process. Technol. 63(1) (2000) 57-70.

DOI: 10.1016/s0378-3820(99)00064-8

Google Scholar

[12] P.T. Williams, N. Ahmad, Investigation of oil-shale pyrolysis processing conditions using thermogravimetric analysis, Appl. Energy 66(2) (2000) 113-133.

DOI: 10.1016/s0306-2619(99)00038-0

Google Scholar

[13] J. Chariesworth, Oil shale pyrolysis. 2. Kinetics and mechanism of hydrocarbon evaluation, Industrial & Engineering Proc Des and Devel. 24 (1985) 1125-1132.

DOI: 10.1021/i200031a038

Google Scholar

[14] A. Aboulkas, K. El Harfi, Study of the kinetics and mechanisms of thermal decomposition of Moroccan Tarfaya oil shale and its kerogen, Oil Shale 25(4) (2008) 426-443.

DOI: 10.3176/oil.2008.4.04

Google Scholar

[15] M. Al-Harahsheh, O. Al-Ayed, J. Robinson, S. Kingman, A. Al-Harahsheh, K. Tarawneh, A. Aaeid, R. Barranco, Effect of demineralization and heating rate on the pyrolysis of Jordanian oil shales, Fuel Proc Technol. 92 (2011) 1805-1811.

DOI: 10.1016/j.fuproc.2011.04.037

Google Scholar

[16] M. Sert, L. Ballice, M. Myüksel, M. Sağlam, The effects of acid treatment on the pyrolysis of Göynük oil shale (turkey) by thermogravimetric analysis, Oil Shale 29(1) (2012) 51-62.

DOI: 10.3176/oil.2012.1.05

Google Scholar

[17] Y.H. Khraisha, Kinetics of isothermal pyrolysis of Jordan oil shales, Energy Conv. Manag. 39(3-4) (1998) 157-165.

DOI: 10.1016/s0196-8904(96)00230-0

Google Scholar

[18] M.V. Kök, A.G. İşcan, Oil shale kinetics by differential methods, J. Thermal Anal. Calorim. 88(3) (2007) 657-661.

DOI: 10.1007/s10973-006-8027-y

Google Scholar

[19] H. Friedman, Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic, J. Polym. Sci. Part C. 6 (1964) 183-195.

DOI: 10.1002/polc.5070060121

Google Scholar

[20] P. Tiwari, M. Deo, Compositional and kinetic analysis of oil shale pyrolysis using TGA-MS, Fuel 94 (2012) 333-341.

DOI: 10.1016/j.fuel.2011.09.018

Google Scholar

[21] H.E. Kissinger, Reaction kinetics in differential thermal analysis, Anal. Chem. 29(11) (1957) 1702-1706.

DOI: 10.1021/ac60131a045

Google Scholar

[22] T. Akahira, T. Sunose, Trans. Joint Convention of Four Electrical Institutes, Paper No. 246, 1969 Research Report, Chiba Institute of Technology, Sci. Technol. 16 (1971) 22-31.

Google Scholar

[23] J.H. Flynn, L.A.A. Wall, Quick, direct method for the determination of activation energy from thermogravimetric data, Polym. Lett. 4 (1966) 323-328.

DOI: 10.1002/pol.1966.110040504

Google Scholar

[24] T. Ozawa, A new method of analyzing thermogravimetric data, Bull. Chem. Soc. Jpn. 38(11) (1965) 1881-1886.

Google Scholar

[25] C. Doyle, Kinetic analysis of thermogravimetric data, J. Appl. Polym. Sci. 5(15) (1961) 285-292.

Google Scholar

[26] A.W. Coats, J.P. Redfern, Kinetic parameters from thermogravimetric data, Nature 201 (1964) 68-69.

DOI: 10.1038/201068a0

Google Scholar

[27] J.H. Campbell, G.J. Kokinas, G. Gallegos, M. Gregg, Gas evolution during oil shale pyrolysis Non-isothermal rate measurements, Fuel 59 (1980) 718-726.

DOI: 10.1016/0016-2361(80)90027-7

Google Scholar

[28] J.H. Campbell, G. Gallegos, M. Gregg, Gas evolution during oil shale pyrolysis. 2: Kinetic and stoichiometric analysis, Fuel 59 (1980) 727-732.

DOI: 10.1016/0016-2361(80)90028-9

Google Scholar

[29] R.L. Braun, A.K. Burnham, J.G. Reynolds, Oil and gas evolution kinetics for oil shale and petroleum source rocks determined from pyrolysis-TQMS data at two heating rates, Energy Fuels 6 (1992) 468-474.

DOI: 10.1021/ef00034a017

Google Scholar

[30] K. Rajeshwar, The kinetics of The Thermal Decomposition of Green River Oil Shale Kerogen by Non-isothermal Thermogravimetry, Thermochim. Acta. 45(3) (1981) 253-263.

DOI: 10.1016/0040-6031(81)85086-1

Google Scholar

[31] J.H. Campbell, G.J. Koskinas, G. Gallegos, M. Gregg, Gas evolution during oil shale pyrolysis. 1. Non-isothermal rate measurements, Fuel 59 (1980) 718-726.

DOI: 10.1016/0016-2361(80)90027-7

Google Scholar

[32] M.V. Kök, R. Pamir, Pyrolysis kinetics of oil shales determined by DSC and TG/DTG, Oil Shale 20(1) (2003) 57-68.

DOI: 10.3176/oil.2003.1.07

Google Scholar