[1]
T. Morimoto, K. Hiratsuka, Y. Sanada and K. Kurihara, Electric double-layer capacitor using organic electrolyte, Journal of Power Sources 60 (1996) 239-247.
DOI: 10.1016/s0378-7753(96)80017-6
Google Scholar
[2]
R. Kotz, M. Carlen, Principles and applications of electrochemical capacitors, Electrochim. Acta 45 (2000) 2483-2498.
DOI: 10.1016/s0013-4686(00)00354-6
Google Scholar
[3]
B.E. Conway, Transition from Supercapacitor" to "Battery, Behavior in Electrochemical Energy Storage, J. Electrochem. Soc. 138 (1991) 1539-1548.
DOI: 10.1149/1.2085829
Google Scholar
[4]
F. Beguin and E. Frackowiak, Supercapacitors: Materials, Systems and Applications, John Wiley and Sons, (2013).
Google Scholar
[5]
M.M. Hantel, V. Presser, R. Kotz, Y. Gogotsi, In situ electrochemical dilatometry of carbide-derived carbons, Electrochem. Commun. 13 (2011) 1221-1224.
DOI: 10.1016/j.elecom.2011.08.039
Google Scholar
[6]
J.R. Miller, P. Simon, Electrochemical Capacitors for Energy Management, Science, 321 (2008) 651-652.
Google Scholar
[7]
G.W. Yang, C.L. Xu, H.L. Li, Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance, Chem. Commun. 48 (2008) 6537-6539.
DOI: 10.1039/b815647f
Google Scholar
[8]
X. He, P. Ling, J. Qiu, M. Yu, X. Zhang, C. Yu, M. Zheng, Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density, J. Power Sources, 240 (2013) 109-113.
DOI: 10.1016/j.jpowsour.2013.03.174
Google Scholar
[9]
C.C. Hu, K.H. Chang, M.C. Lin, Y.T. Wu, Design and tailoring of the nanotubular arrayed architectures of hydrous RuO2 for next generation supercapacitors, Nano Letter, 6 (2006) 2690-2695.
DOI: 10.1021/nl061576a
Google Scholar
[10]
G. Arabale, D. Wagh, M. Kulkarni, I.S. Mulla, S.P. Vernekar, K. Vijayamohanan, A.M. Rao, Enhanced supercapacitance of multiwalled carbon nanotubes functionalzed with Ruthenium Oxide, Chem. Phys. Lett. 376 (2003) 207-213.
DOI: 10.1016/s0009-2614(03)00946-1
Google Scholar
[11]
X. Qin, S. Durbach, G.T. Wu, Electrochemical characterization on RuO2 xH2O/carbon nanotubes composite electrodes for high energy density supercapacitors, Carbon, 42 (2004) 451-453.
DOI: 10.1016/j.carbon.2003.11.012
Google Scholar
[12]
E. Frackowaik, F. Beguin, Electrochemical storage of energy in carbon nanotubes and nanostructured carbons, Carbon 40 (2002) 1775-1787.
DOI: 10.1016/s0008-6223(02)00045-3
Google Scholar
[13]
C. Emmenegger, P. Mauron, P. Sudan, P. Wenger, V. Hermann, R. Gallay, A. Zuttel, Investigation of electrochemical double-layer (ECDL) capacitors electrodes based on carbon nanotubes and activated carbon materials, J. Power Sources 124 (2003).
DOI: 10.1016/s0378-7753(03)00590-1
Google Scholar
[14]
H. Probstle, C. Schmitt, J. Fricke, Button cell supercapacitors with monolithic carbon aerogels, J. Power Sources 105 (2002) 189-194.
DOI: 10.1016/s0378-7753(01)00938-7
Google Scholar
[15]
K. Kierzek, E. Frackowiak, G. Lota, G. Gryglewicz, J. Machnikowaski, Electrochemical capacitors based on highly porous carbons prepared by KOH activation, Electrochim. Acta 49 (2004) 515-523.
DOI: 10.1016/j.electacta.2003.08.026
Google Scholar
[16]
E. Frackowaik, F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon 39 (2001) 937–950.
Google Scholar
[17]
D.Y. Qu, Studies of the Activated Carbon Used in Double-layer Supercapacitors, J. Power Sources 4794 (2002) 1–9.
Google Scholar
[18]
Q. Xiao, X. Zhou, The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor, Electrochim. Acta 48 (2003) 575–580.
DOI: 10.1016/s0013-4686(02)00727-2
Google Scholar
[19]
W.C. Chen, T.C. Wen, H. Teng, Polyaniline-deposited porous carbon electrode for supercapacitor, Electrochim. Acta 48 (2003) 641–649.
DOI: 10.1016/s0013-4686(02)00734-x
Google Scholar
[20]
G. Wang, L. Zhang. J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev. 41 (2012), 797-828.
DOI: 10.1039/c1cs15060j
Google Scholar
[21]
H. Liang, F. Chen, R. Li, L. Wang, Z. Deng, Electrochemical study of activated carbon-semiconducting oxide composites as electrode materials of double-layer capacitors, Electrochim. Acta 49 (2004) 3463–3467.
DOI: 10.1016/j.electacta.2004.03.016
Google Scholar
[22]
C.C. Hu, C.C. Wang, Effects of electrolytes and electrochemical pretreatments on the capacitive characteristics of activated carbon fabrics for supercapacitors, J. Power Sources 125 (2004) 299–308.
DOI: 10.1016/j.jpowsour.2003.08.002
Google Scholar
[23]
M.N. Iqbaldin, I Khudzir, M.I. Mohd Azlan, A.G. Zaidi, B. Surani, Z. Zubri, Properties of Coconut Shell Activated Carbon, J. Tropical Forest Sci., 25 (2013) 497–503.
Google Scholar
[24]
K. Babel, K. Jurewicz, KOH activated carbon fabrics as supercapacitor material, J. Phys. Chem. Solids 65 (2004) 275–280.
DOI: 10.1016/j.jpcs.2003.08.023
Google Scholar
[25]
K.Y. Foo, B.H. Hameed, A short review of activated carbon assisted electrosorption process: An overview, current stage and future prospects, J. Hazard. Mater. 170 (2009) 552-559.
DOI: 10.1016/j.jhazmat.2009.05.057
Google Scholar
[26]
M.C. Ncibi, V.J. Rose, B. Mahjoub, C.J. Marius, J. Lambert, J.J. Ehrhardt, Y. Bercion, M. Seffen, S. Gaspard, Preparation and characterisation of raw chars and physically activated carbons derived from marine Posidonia oceanica (L. ) fibres, J. Hazard. Mater. 165 (2009).
DOI: 10.1016/j.jhazmat.2008.09.126
Google Scholar
[27]
G.F. Ma, J. Li, K. Sun, H. Peng, J. Mu, Z. Lei, High performance solid-state supercapacitor with PVA-KOH-K-3[Fe(CN)(6)] gel polymer as electrolyte and separator, J. Power Sources, 256 (2014) 281-287.
DOI: 10.1016/j.jpowsour.2014.01.062
Google Scholar
[28]
R.U. Perez, F.C. Marin, D.F. Jimenez, C.M. Castilla, Granular and monolithic activated carbons from KOH-activation of olive stones, Microporous Mesoporous Mater. 92 (2006) 64–70.
DOI: 10.1016/j.micromeso.2006.01.002
Google Scholar
[29]
K.Y. Foo, B.H. Hameed, Coconut husk derived activated carbon via microwave induced activation: Effects of activation agents, preparation parameters and adsorption performance, Chem. Eng. J. 184 (2012) 57-65.
DOI: 10.1016/j.cej.2011.12.084
Google Scholar
[30]
C. Zheng, X. Zhou, H. Cao, G. Wang, Z. Liu, Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material, J. Power Sources 258 (2014) 290-296.
DOI: 10.1016/j.jpowsour.2014.01.056
Google Scholar
[31]
C. Zhang, L. Xiea, W. Song, J. Wang, G. Sun, K. Li, J. Electrochemical performance of asymmetric supercapacitor based on Co3O4/AC materials, Electroanal. Chem. 706 (2013) 1-6.
Google Scholar
[32]
S. Sun, J. Song, Z. Shan, R. Feng, J. Electrochemical properties of a low molecular weight gel electrolyte for supercapacitor, Electroanal. Chem. 676 (2012) 1-5.
DOI: 10.1016/j.jelechem.2012.04.028
Google Scholar
[33]
Y. Li, M. Zijll, S. Chiang, N. Pan, KOH modified graphene nanosheets for supercapacitor electrodes, J. Power Sources 196 (2011) 6003-6006.
DOI: 10.1016/j.jpowsour.2011.02.092
Google Scholar
[34]
Z. Hu, M.P. Srinivasan, Preparation of high-surface-area activated carbons from coconut shell, Microporous Mesoporous Mater. 27 (1999) 11–18.
DOI: 10.1016/s1387-1811(98)00183-8
Google Scholar
[35]
W. Li, J. Peng, L. Zhang, K. Yang, H. Xia, S. Zhang, S. Guo, Preparation of activated carbon from coconut shell chars in pilot-scale microwave heating equipment at 60 kW, Waste Manage. Res. 29 (2009) 756–760.
DOI: 10.1016/j.wasman.2008.03.004
Google Scholar
[36]
K. Yang, J. Peng, C. Srinivasakannan, L. Zhang, H. Xia, X. Duan, Preparation of high surface area activated carbon from coconut shells using microwave heating, Bioresour. Technol. 101 (2009) 6163–6169.
DOI: 10.1016/j.biortech.2010.03.001
Google Scholar
[37]
H. Deng, L. Yang, G. Tao, J. Dai, Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation—Application in methylene blue adsorption from aqueous solution, J. Hazard. Mater. 166 (2009).
DOI: 10.1016/j.jhazmat.2008.12.080
Google Scholar
[38]
T.C. Chandra, M.M. Mirna, J. Sunarso, Y. Sudaryanto, S. Ismadji, Activated carbon from durian shell: Preparation and characterization, J. Taiwan Inst. Chem. Eng. 40 (2009) 457–462.
DOI: 10.1016/j.jtice.2008.10.002
Google Scholar
[39]
M.O. Marin, J.A. Fernandez, M.J. Lazaro, C.F. Gonzalez, A.M. García, V.G. Serrano, F. Stoeckli, T.A. Centeno, Cherry stones as precursor of activated carbons for supercapacitors, Mater. Chem. Phys. 114 (2009) 323–327.
DOI: 10.1016/j.matchemphys.2008.09.010
Google Scholar
[40]
H.M. Mozammel, O. Masahiro, S.C. Bhattacharya, Activated charcoal from coconut shell using ZnCl2 activation, Biomass Bioenergy 22 (2002) 397 – 400.
DOI: 10.1016/s0961-9534(02)00015-6
Google Scholar
[41]
Y. Ji, T. Li, L. Zhu, X. Wang, Q. Lin, Preparation of activated carbons by microwave heating KOH activation, Appl. Surf. Sci. 254 (2007) 506–512.
DOI: 10.1016/j.apsusc.2007.06.034
Google Scholar
[42]
T. Wang, S. Tan, C. Liang, Preparation and characterization of activated carbon from wood via microwave-induced ZnCl2 activation, Carbon 47 (2009) 1867-1885.
DOI: 10.1016/j.carbon.2009.03.035
Google Scholar
[43]
F.C. Wu, R.L. Tseng, R.S. Juang, Comparisons of porous and adsorption properties of carbons activated by steam and KOH, J. Colloid Interface Sci. 283 (2005) 49-56.
DOI: 10.1016/j.jcis.2004.08.037
Google Scholar
[44]
K. Sun, J.C. Jiang, Preparation and characterization of activated carbon from rubber-seed shell by physical activation with steam, Biomass Bioenergy 34 (2010) 539-544.
DOI: 10.1016/j.biombioe.2009.12.020
Google Scholar
[45]
W. Tongpoothorn, M. Sriuttha, P. Homchan, S. Chanthai, C. Ruangviriyachai, Preparation of activated carbon derived from Jatrophacurcas fruit shell by simple thermo-chemical activation and characterization of their physico-chemical properties, Chem. Eng. Res. Des. 89 (2010).
DOI: 10.1016/j.cherd.2010.06.012
Google Scholar
[46]
G.G. Stavropoulos, Precursor materials suitability for super activated carbons production, Fuel Process. Technol. 86 (2005) 1165-1173.
DOI: 10.1016/j.fuproc.2004.11.011
Google Scholar