Fabrication and Characterization of Porous Activated Carbon from Coconut Shell by Using Microwave-Induced KOH Activation Technique

Article Preview

Abstract:

Coconut shell-based activated carbon (CSAc) was prepared by chemical activation method using microwave-induced KOH technique. The activation process was successfully carried out with varying microwave power ranging from 100 to 1000 W and impregnation ratio of 1.0 to 3.0. The surface area, pore sizes, surface morphology and specific capacitance of the produced activated carbon were analyzed by using an automatic quantachrome instrument (Autosorb1C) volumetric sorption analyzer, scanning electron microscope (SEM) and automatic battery cycler. The optimum activation power and impregnation ratio were found at 600 W and 1.5, respectively. The resulted product, C3 has maximum surface area and specific capacitance value of 1768.8 m2 g-1 and 156.33 F g-1 respectively, with carbon yield of 58 %.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

289-298

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Morimoto, K. Hiratsuka, Y. Sanada and K. Kurihara, Electric double-layer capacitor using organic electrolyte, Journal of Power Sources 60 (1996) 239-247.

DOI: 10.1016/s0378-7753(96)80017-6

Google Scholar

[2] R. Kotz, M. Carlen, Principles and applications of electrochemical capacitors, Electrochim. Acta 45 (2000) 2483-2498.

DOI: 10.1016/s0013-4686(00)00354-6

Google Scholar

[3] B.E. Conway, Transition from Supercapacitor" to "Battery, Behavior in Electrochemical Energy Storage, J. Electrochem. Soc. 138 (1991) 1539-1548.

DOI: 10.1149/1.2085829

Google Scholar

[4] F. Beguin and E. Frackowiak, Supercapacitors: Materials, Systems and Applications, John Wiley and Sons, (2013).

Google Scholar

[5] M.M. Hantel, V. Presser, R. Kotz, Y. Gogotsi, In situ electrochemical dilatometry of carbide-derived carbons, Electrochem. Commun. 13 (2011) 1221-1224.

DOI: 10.1016/j.elecom.2011.08.039

Google Scholar

[6] J.R. Miller, P. Simon, Electrochemical Capacitors for Energy Management, Science, 321 (2008) 651-652.

Google Scholar

[7] G.W. Yang, C.L. Xu, H.L. Li, Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance, Chem. Commun. 48 (2008) 6537-6539.

DOI: 10.1039/b815647f

Google Scholar

[8] X. He, P. Ling, J. Qiu, M. Yu, X. Zhang, C. Yu, M. Zheng, Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density, J. Power Sources, 240 (2013) 109-113.

DOI: 10.1016/j.jpowsour.2013.03.174

Google Scholar

[9] C.C. Hu, K.H. Chang, M.C. Lin, Y.T. Wu, Design and tailoring of the nanotubular arrayed architectures of hydrous RuO2 for next generation supercapacitors, Nano Letter, 6 (2006) 2690-2695.

DOI: 10.1021/nl061576a

Google Scholar

[10] G. Arabale, D. Wagh, M. Kulkarni, I.S. Mulla, S.P. Vernekar, K. Vijayamohanan, A.M. Rao, Enhanced supercapacitance of multiwalled carbon nanotubes functionalzed with Ruthenium Oxide, Chem. Phys. Lett. 376 (2003) 207-213.

DOI: 10.1016/s0009-2614(03)00946-1

Google Scholar

[11] X. Qin, S. Durbach, G.T. Wu, Electrochemical characterization on RuO2 xH2O/carbon nanotubes composite electrodes for high energy density supercapacitors, Carbon, 42 (2004) 451-453.

DOI: 10.1016/j.carbon.2003.11.012

Google Scholar

[12] E. Frackowaik, F. Beguin, Electrochemical storage of energy in carbon nanotubes and nanostructured carbons, Carbon 40 (2002) 1775-1787.

DOI: 10.1016/s0008-6223(02)00045-3

Google Scholar

[13] C. Emmenegger, P. Mauron, P. Sudan, P. Wenger, V. Hermann, R. Gallay, A. Zuttel, Investigation of electrochemical double-layer (ECDL) capacitors electrodes based on carbon nanotubes and activated carbon materials, J. Power Sources 124 (2003).

DOI: 10.1016/s0378-7753(03)00590-1

Google Scholar

[14] H. Probstle, C. Schmitt, J. Fricke, Button cell supercapacitors with monolithic carbon aerogels, J. Power Sources 105 (2002) 189-194.

DOI: 10.1016/s0378-7753(01)00938-7

Google Scholar

[15] K. Kierzek, E. Frackowiak, G. Lota, G. Gryglewicz, J. Machnikowaski, Electrochemical capacitors based on highly porous carbons prepared by KOH activation, Electrochim. Acta 49 (2004) 515-523.

DOI: 10.1016/j.electacta.2003.08.026

Google Scholar

[16] E. Frackowaik, F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon 39 (2001) 937–950.

Google Scholar

[17] D.Y. Qu, Studies of the Activated Carbon Used in Double-layer Supercapacitors, J. Power Sources 4794 (2002) 1–9.

Google Scholar

[18] Q. Xiao, X. Zhou, The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor, Electrochim. Acta 48 (2003) 575–580.

DOI: 10.1016/s0013-4686(02)00727-2

Google Scholar

[19] W.C. Chen, T.C. Wen, H. Teng, Polyaniline-deposited porous carbon electrode for supercapacitor, Electrochim. Acta 48 (2003) 641–649.

DOI: 10.1016/s0013-4686(02)00734-x

Google Scholar

[20] G. Wang, L. Zhang. J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev. 41 (2012), 797-828.

DOI: 10.1039/c1cs15060j

Google Scholar

[21] H. Liang, F. Chen, R. Li, L. Wang, Z. Deng, Electrochemical study of activated carbon-semiconducting oxide composites as electrode materials of double-layer capacitors, Electrochim. Acta 49 (2004) 3463–3467.

DOI: 10.1016/j.electacta.2004.03.016

Google Scholar

[22] C.C. Hu, C.C. Wang, Effects of electrolytes and electrochemical pretreatments on the capacitive characteristics of activated carbon fabrics for supercapacitors, J. Power Sources 125 (2004) 299–308.

DOI: 10.1016/j.jpowsour.2003.08.002

Google Scholar

[23] M.N. Iqbaldin, I Khudzir, M.I. Mohd Azlan, A.G. Zaidi, B. Surani, Z. Zubri, Properties of Coconut Shell Activated Carbon, J. Tropical Forest Sci., 25 (2013) 497–503.

Google Scholar

[24] K. Babel, K. Jurewicz, KOH activated carbon fabrics as supercapacitor material, J. Phys. Chem. Solids 65 (2004) 275–280.

DOI: 10.1016/j.jpcs.2003.08.023

Google Scholar

[25] K.Y. Foo, B.H. Hameed, A short review of activated carbon assisted electrosorption process: An overview, current stage and future prospects, J. Hazard. Mater. 170 (2009) 552-559.

DOI: 10.1016/j.jhazmat.2009.05.057

Google Scholar

[26] M.C. Ncibi, V.J. Rose, B. Mahjoub, C.J. Marius, J. Lambert, J.J. Ehrhardt, Y. Bercion, M. Seffen, S. Gaspard, Preparation and characterisation of raw chars and physically activated carbons derived from marine Posidonia oceanica (L. ) fibres, J. Hazard. Mater. 165 (2009).

DOI: 10.1016/j.jhazmat.2008.09.126

Google Scholar

[27] G.F. Ma, J. Li, K. Sun, H. Peng, J. Mu, Z. Lei, High performance solid-state supercapacitor with PVA-KOH-K-3[Fe(CN)(6)] gel polymer as electrolyte and separator, J. Power Sources, 256 (2014) 281-287.

DOI: 10.1016/j.jpowsour.2014.01.062

Google Scholar

[28] R.U. Perez, F.C. Marin, D.F. Jimenez, C.M. Castilla, Granular and monolithic activated carbons from KOH-activation of olive stones, Microporous Mesoporous Mater. 92 (2006) 64–70.

DOI: 10.1016/j.micromeso.2006.01.002

Google Scholar

[29] K.Y. Foo, B.H. Hameed, Coconut husk derived activated carbon via microwave induced activation: Effects of activation agents, preparation parameters and adsorption performance, Chem. Eng. J. 184 (2012) 57-65.

DOI: 10.1016/j.cej.2011.12.084

Google Scholar

[30] C. Zheng, X. Zhou, H. Cao, G. Wang, Z. Liu, Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material, J. Power Sources 258 (2014) 290-296.

DOI: 10.1016/j.jpowsour.2014.01.056

Google Scholar

[31] C. Zhang, L. Xiea, W. Song, J. Wang, G. Sun, K. Li, J. Electrochemical performance of asymmetric supercapacitor based on Co3O4/AC materials, Electroanal. Chem. 706 (2013) 1-6.

Google Scholar

[32] S. Sun, J. Song, Z. Shan, R. Feng, J. Electrochemical properties of a low molecular weight gel electrolyte for supercapacitor, Electroanal. Chem. 676 (2012) 1-5.

DOI: 10.1016/j.jelechem.2012.04.028

Google Scholar

[33] Y. Li, M. Zijll, S. Chiang, N. Pan, KOH modified graphene nanosheets for supercapacitor electrodes, J. Power Sources 196 (2011) 6003-6006.

DOI: 10.1016/j.jpowsour.2011.02.092

Google Scholar

[34] Z. Hu, M.P. Srinivasan, Preparation of high-surface-area activated carbons from coconut shell, Microporous Mesoporous Mater. 27 (1999) 11–18.

DOI: 10.1016/s1387-1811(98)00183-8

Google Scholar

[35] W. Li, J. Peng, L. Zhang, K. Yang, H. Xia, S. Zhang, S. Guo, Preparation of activated carbon from coconut shell chars in pilot-scale microwave heating equipment at 60 kW, Waste Manage. Res. 29 (2009) 756–760.

DOI: 10.1016/j.wasman.2008.03.004

Google Scholar

[36] K. Yang, J. Peng, C. Srinivasakannan, L. Zhang, H. Xia, X. Duan, Preparation of high surface area activated carbon from coconut shells using microwave heating, Bioresour. Technol. 101 (2009) 6163–6169.

DOI: 10.1016/j.biortech.2010.03.001

Google Scholar

[37] H. Deng, L. Yang, G. Tao, J. Dai, Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation—Application in methylene blue adsorption from aqueous solution, J. Hazard. Mater. 166 (2009).

DOI: 10.1016/j.jhazmat.2008.12.080

Google Scholar

[38] T.C. Chandra, M.M. Mirna, J. Sunarso, Y. Sudaryanto, S. Ismadji, Activated carbon from durian shell: Preparation and characterization, J. Taiwan Inst. Chem. Eng. 40 (2009) 457–462.

DOI: 10.1016/j.jtice.2008.10.002

Google Scholar

[39] M.O. Marin, J.A. Fernandez, M.J. Lazaro, C.F. Gonzalez, A.M. García, V.G. Serrano, F. Stoeckli, T.A. Centeno, Cherry stones as precursor of activated carbons for supercapacitors, Mater. Chem. Phys. 114 (2009) 323–327.

DOI: 10.1016/j.matchemphys.2008.09.010

Google Scholar

[40] H.M. Mozammel, O. Masahiro, S.C. Bhattacharya, Activated charcoal from coconut shell using ZnCl2 activation, Biomass Bioenergy 22 (2002) 397 – 400.

DOI: 10.1016/s0961-9534(02)00015-6

Google Scholar

[41] Y. Ji, T. Li, L. Zhu, X. Wang, Q. Lin, Preparation of activated carbons by microwave heating KOH activation, Appl. Surf. Sci. 254 (2007) 506–512.

DOI: 10.1016/j.apsusc.2007.06.034

Google Scholar

[42] T. Wang, S. Tan, C. Liang, Preparation and characterization of activated carbon from wood via microwave-induced ZnCl2 activation, Carbon 47 (2009) 1867-1885.

DOI: 10.1016/j.carbon.2009.03.035

Google Scholar

[43] F.C. Wu, R.L. Tseng, R.S. Juang, Comparisons of porous and adsorption properties of carbons activated by steam and KOH, J. Colloid Interface Sci. 283 (2005) 49-56.

DOI: 10.1016/j.jcis.2004.08.037

Google Scholar

[44] K. Sun, J.C. Jiang, Preparation and characterization of activated carbon from rubber-seed shell by physical activation with steam, Biomass Bioenergy 34 (2010) 539-544.

DOI: 10.1016/j.biombioe.2009.12.020

Google Scholar

[45] W. Tongpoothorn, M. Sriuttha, P. Homchan, S. Chanthai, C. Ruangviriyachai, Preparation of activated carbon derived from Jatrophacurcas fruit shell by simple thermo-chemical activation and characterization of their physico-chemical properties, Chem. Eng. Res. Des. 89 (2010).

DOI: 10.1016/j.cherd.2010.06.012

Google Scholar

[46] G.G. Stavropoulos, Precursor materials suitability for super activated carbons production, Fuel Process. Technol. 86 (2005) 1165-1173.

DOI: 10.1016/j.fuproc.2004.11.011

Google Scholar