[1]
T.F. Costa, V.E.A. Felli. Hazards of chemical residues of hospital care. Cogitare Enferm. 17 (2012) 322-330.
Google Scholar
[2]
C.S. Moraes. Evaluation of the functional activity of phagocytes of individuals exposed or not to xylol in an occupacional context. R. Elet. Farm. 2 (2005) 122-125.
Google Scholar
[3]
K.N.S. Costa, I. º Pinheiro, G.T. Calazans. Evaluation of hazards associated to xylol in laboratories of pathological anatomy and cytology. Ver. Bras. Saúde Ocup. 32 (2007) 50-56.
Google Scholar
[4]
R. Xelegati, M.L.C. Robazzi, M.H.P. Marziale. Chemical occupational risks identified by nurses in a hospital environment. Rev. Latino-Am. Enferm. 14 (2006) 214-219.
DOI: 10.1590/s0104-11692006000200010
Google Scholar
[5]
H. Katagiri, T. Suzuki, Y. Aizawa. Indoor Glutaraldehyde levels in the endoscope disinfecting room and subjective symptoms among workers. Ind Health. 44 (2006) 225-229.
DOI: 10.2486/indhealth.44.225
Google Scholar
[6]
F. Fedrizzi, J. Cagliari, C.T. Teixeira, A.R. Finotti, I.N. Filho. The environmental aspects of the evaporation of BTEX from gasoline with and without ethanol. Int. J. Environ. Waste Manage. 11 (2013) 148-157.
DOI: 10.1504/ijewm.2013.051820
Google Scholar
[7]
A.G.S. Prado. Green chemistry, the chemitry challenges in the new millennium. Quim. Nova. 26 (2003) 738-744.
Google Scholar
[8]
A.M. Sanseverino. Clean organic synthesis. Quim. Nova. 23 (2000) 102-107.
Google Scholar
[9]
H. Kwon, K. Tak, I. Lee. Web-based multi-dimensional education system for the simulated moving bed process. Korean J. Chem. Eng. 31 (2014) 1736-1745.
DOI: 10.1007/s11814-014-0124-1
Google Scholar
[10]
A.E. Gerbase, J.R. Gregório, T. Calvete. Management of chemical residues in an organic chemistry class of the chemistry course of the Federal University of Rio Grande do Sul. Quim. Nova. 29 (2006) 397-403.
DOI: 10.1590/s0100-40422006000200036
Google Scholar
[11]
F. Visintin, D. Pittino. Founding team composition and early performance of university—Based spin-off companies. Technovation. 34 (2014) 31-43.
DOI: 10.1016/j.technovation.2013.09.004
Google Scholar
[12]
G. McDonnell, D. Russel. Antiseptics and disinfectants activity, action and resistance. Clin. Microbiol. Rev. 1 (1999) 147-179.
DOI: 10.1128/cmr.12.1.147
Google Scholar
[13]
D. Carrara, C.A. Shirahige, A.C.P.V. Braga. Did is effective the disinfection of endoscope with peracetic acid by ten minutes? Rev. SOBECC. 18 (2013) 26-37.
Google Scholar
[14]
S. Müller, A.C. Gruber, H.H.K. Hoefel. Esophageal Manometry: equipment cleaning and disinfection with glutaraldehyde; Protocol of the Hospital de Clínicas de Porto Alegre, RS. Arq. Gastroenterol. 38 (2001) 276-280.
DOI: 10.1590/s0004-28032001000400012
Google Scholar
[15]
J. Lin, S.H. Kennedy, T. Svarovsky. High-quality genomic DNA extraction from formalin fixed and paraffin-embedded samples deparaffinized using mineral oil. Anal. Biochem. 395 (2009) 265-267.
DOI: 10.1016/j.ab.2009.08.016
Google Scholar
[16]
R.J. Buesa. Mineral oil: The best xylene substitute for tissue processing yet? J. Histotechnol. 23 (2000) 143-148.
DOI: 10.1179/his.2000.23.2.143
Google Scholar
[17]
B.R. Premalatha, P. Shankargouda, S.R. Roopa. Mineral oil - a biofriendly substitute for xylene in deparaffinization: a novel method. J. Contemp. Dental Pract. 14 (2013) 281-286.
DOI: 10.5005/jp-journals-10024-1314
Google Scholar
[18]
A. Buschini, P. Carboni, M. Furlini. Sodium hypochlorite, chlorine dioxide and peracetic acid induced genotoxicity detected by the Comet assay and Saccharomyces cerevisiae D7 tests. Mutagenesis. 19 (2004) 157-162.
DOI: 10.1093/mutage/geh012
Google Scholar