Dynamic Behavior of Cellular Materials under Combined Shear-Compression

Article Preview

Abstract:

A 3D cell-based finite element model is employed to investigate the dynamic biaxial behavior of cellular materials under combined shear-compression. The biaxial behavior is characterized by the normal stress and shear stress, which could be determined directly from the finite element results. A crush plateau stress is introduced to illustrate the critical crush stress, and the result shows that the normal plateau stress declines with the increase of the shear plateau stress, which climbs with the increase of loading angle. An elliptical criterion of normal plateau stress vs. shear plateau stress is obtained by the nonlinear regression method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

649-653

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.J. Gibson, M.F. Ashby, Cellular solids: Structure and Properties, second ed., Cambridge, UK: Cambridge University Press, (1997).

Google Scholar

[2] S.D. Papka, S. Kyriakides, Biaxial crushing of honeycombs-Part I: Experiments, Int. J. Solid. Struct. 36 (1999) 4367-4396.

DOI: 10.1016/s0020-7683(98)00224-8

Google Scholar

[3] V.S. Deshpande, N.A. Fleck, Isotropic constitutive models for metallic foams, J. Mech. Phys. Solid. 48 (2000) 1253-1283.

DOI: 10.1016/s0022-5096(99)00082-4

Google Scholar

[4] M. Doyoyo, T. Wierzbicki, Experimental studies on the yield behavior of ductile and brittle aluminum foams, Int. J. Plast. 19 (2003) 1195-1214.

DOI: 10.1016/s0749-6419(02)00017-7

Google Scholar

[5] D. Ruan, G. Lu, L.S. Ong, B. Wang, Triaxial compression of aluminium foams, Compos. Sci. Technol. 67 (2007) 1218-1234.

DOI: 10.1016/j.compscitech.2006.05.005

Google Scholar

[6] J. Chung, A.M. Waas, Compressive response of circular cell polycarbonate honeycombs under in plane biaxial static and dynamic loading. Part I: Experiments, Int. J. Impact Eng. 27 (2002) 729-754.

DOI: 10.1016/s0734-743x(02)00011-8

Google Scholar

[7] J.L. Yu, E.H. Wang, J.R. Li, An experimental study on the quasi-static and dynamic behavior of aluminum foams under multi-axial compression, Adv. Heterogen. Mater. Mech. (2008) 879-882.

Google Scholar

[8] S.T. Hong, J. Pan, T. Tyan, P. Prasad, Dynamic crush behaviors of aluminium honeycomb specimens under compression dominant inclined loads, Int. J. Plast. 24 (2008) 89-117.

DOI: 10.1016/j.ijplas.2007.02.003

Google Scholar

[9] Z.J. Zheng, C.F. Wang, J.L. Yu, S.R. Reid, J.J. Harrigan, Dynamic stress-strain states for metal foams using a 3D cellular model, J. Mech. Phys. Solid. 72 (2014) 93-114.

DOI: 10.1016/j.jmps.2014.07.013

Google Scholar

[10] B. Hou, S. Pattofatto, Y.L. Li, H. Zhao, Impact behavior of honeycombs under combined shear-compression. Part II: Analysis, Int. J. Solid Struct. 48 (2011) 698-705.

DOI: 10.1016/j.ijsolstr.2010.11.004

Google Scholar