[1]
L.J. Gibson, M.F. Ashby, Cellular solids: Structure and Properties, second ed., Cambridge, UK: Cambridge University Press, (1997).
Google Scholar
[2]
S.D. Papka, S. Kyriakides, Biaxial crushing of honeycombs-Part I: Experiments, Int. J. Solid. Struct. 36 (1999) 4367-4396.
DOI: 10.1016/s0020-7683(98)00224-8
Google Scholar
[3]
V.S. Deshpande, N.A. Fleck, Isotropic constitutive models for metallic foams, J. Mech. Phys. Solid. 48 (2000) 1253-1283.
DOI: 10.1016/s0022-5096(99)00082-4
Google Scholar
[4]
M. Doyoyo, T. Wierzbicki, Experimental studies on the yield behavior of ductile and brittle aluminum foams, Int. J. Plast. 19 (2003) 1195-1214.
DOI: 10.1016/s0749-6419(02)00017-7
Google Scholar
[5]
D. Ruan, G. Lu, L.S. Ong, B. Wang, Triaxial compression of aluminium foams, Compos. Sci. Technol. 67 (2007) 1218-1234.
DOI: 10.1016/j.compscitech.2006.05.005
Google Scholar
[6]
J. Chung, A.M. Waas, Compressive response of circular cell polycarbonate honeycombs under in plane biaxial static and dynamic loading. Part I: Experiments, Int. J. Impact Eng. 27 (2002) 729-754.
DOI: 10.1016/s0734-743x(02)00011-8
Google Scholar
[7]
J.L. Yu, E.H. Wang, J.R. Li, An experimental study on the quasi-static and dynamic behavior of aluminum foams under multi-axial compression, Adv. Heterogen. Mater. Mech. (2008) 879-882.
Google Scholar
[8]
S.T. Hong, J. Pan, T. Tyan, P. Prasad, Dynamic crush behaviors of aluminium honeycomb specimens under compression dominant inclined loads, Int. J. Plast. 24 (2008) 89-117.
DOI: 10.1016/j.ijplas.2007.02.003
Google Scholar
[9]
Z.J. Zheng, C.F. Wang, J.L. Yu, S.R. Reid, J.J. Harrigan, Dynamic stress-strain states for metal foams using a 3D cellular model, J. Mech. Phys. Solid. 72 (2014) 93-114.
DOI: 10.1016/j.jmps.2014.07.013
Google Scholar
[10]
B. Hou, S. Pattofatto, Y.L. Li, H. Zhao, Impact behavior of honeycombs under combined shear-compression. Part II: Analysis, Int. J. Solid Struct. 48 (2011) 698-705.
DOI: 10.1016/j.ijsolstr.2010.11.004
Google Scholar