Thermal Buckling and Postbuckling Analysis of Functionally Graded Carbon Nanotube-Reinforced Composite Beams

Article Preview

Abstract:

Thermal buckling and postbuckling of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) beams are investigated in this paper based on Timoshenko beam theory within the framework of von Kármán geometric nonlinearity. The material properties of FG-CNTRCs are assumed to be temperature-dependent and vary in the beam thickness direction. The governing equations are derived by employing Hamilton’s principle then discretized by using differential quadrature (DQ) method. An iterative scheme is used to obtain the critical buckling temperature and nonlinear thermal postbuckling equilibrium path of the FG-CNTRC beam. Numerical results are presented for FG-CNTRC beams hinged or clamped at both ends, with particular focuses on the effects of the volume fraction of carbon nanotubes (CNTs), slenderness ratio, and end supports on the thermal buckling and postbuckling characteristics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

182-187

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Qian, D., Dickey, E.C., Andrews, R., and Rantell, T., Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Applied physics letters, 2000. 76(20): pp.2868-2870.

DOI: 10.1063/1.126500

Google Scholar

[2] Shen, H. -S., Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Composite Structures, 2009. 91(1): pp.9-19.

DOI: 10.1016/j.compstruct.2009.04.026

Google Scholar

[3] Kwon, H., Bradbury, C.R., and Leparoux, M., Fabrication of Functionally Graded Carbon Nanotube‐Reinforced Aluminum Matrix Composite. Advanced engineering materials, 2011. 13(4): pp.325-329.

DOI: 10.1002/adem.201000251

Google Scholar

[4] Yas, M. and Samadi, N., Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation. International Journal of Pressure Vessels and Piping, 2012. 98: pp.119-128.

DOI: 10.1016/j.ijpvp.2012.07.012

Google Scholar

[5] Wattanasakulpong, N. and Ungbhakorn, V., Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation. Computational Materials Science, 2013. 71: pp.201-208.

DOI: 10.1016/j.commatsci.2013.01.028

Google Scholar

[6] Rafiee, M., Yang, J., and Kitipornchai, S., Thermal bifurcation buckling of piezoelectric carbon nanotube reinforced composite beams. Computers & Mathematics with Applications, 2013. 66(7): pp.1147-1160.

DOI: 10.1016/j.camwa.2013.04.031

Google Scholar

[7] Wu, H., Kitipornchai, S., and Yang, J., Free Vibration and Buckling Analysis of Sandwich Beams with Functionally Graded Carbon Nanotube-Reinforced Composite Face Sheets. International Journal of Structural Stability and Dynamics, 2015. 15(7): p.1540011.

DOI: 10.1142/s0219455415400118

Google Scholar

[8] Yang, J., Liew, K.M., Wu, Y.F., and Kitipornchai, S., Thermo-mechanical post-buckling of FGM cylindrical panels with temperature-dependent properties. International Journal of Solids and Structures, 2006. 43(2): pp.307-324.

DOI: 10.1016/j.ijsolstr.2005.04.001

Google Scholar

[9] Shen, H. -S. and Zhang, C. -L., Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates. Materials & Design, 2010. 31(7): pp.3403-3411.

DOI: 10.1016/j.matdes.2010.01.048

Google Scholar

[10] Khdeir, A., Thermal buckling of cross-ply laminated composite beams. Acta mechanica, 2001. 149(1-4): pp.201-213.

DOI: 10.1007/bf01261672

Google Scholar

[11] Rao, G.V. and Varma, R.R., Heuristic thermal postbuckling and large-amplitude vibration formulations of beams. AIAA journal, 2009. 47(8): p.1977-(1980).

DOI: 10.2514/1.43505

Google Scholar