[1]
Duan, X., Y. Huang, R. Agarwal, and C.M. Lieber, Single-nanowire electrically driven lasers. Nature 421(6920) (2003). 241-245.
DOI: 10.1038/nature01353
Google Scholar
[2]
Melosh, N.A., A. Boukai, F. Diana, B. Gerardot, A. Badolato, P.M. Petroff, and J.R. Heath, Ultrahigh-density nanowire lattices and circuits. Science 300(5616) (2003). 112-115.
DOI: 10.1126/science.1081940
Google Scholar
[3]
Wu, W., S. Brongersma, M. Van Hove, and K. Maex, Influence of surface and grain-boundary scattering on the resistivity of copper in reduced dimensions. Appl. Phys. Lett. 84(15) (2004). 2838-2840.
DOI: 10.1063/1.1703844
Google Scholar
[4]
Zhan, H. and Y. Gu, A fundamental numerical and theoretical study for the vibrational properties of nanowires. J. Appl. Phys. 111(12) (2012).
Google Scholar
[5]
Olsson, P.A., Transverse resonant properties of strained gold nanowires. J. Appl. Phys. 108(3) (2010).
Google Scholar
[6]
Kim, S.Y. and H.S. Park, Utilizing mechanical strain to mitigate the intrinsic loss mechanisms in oscillating metal nanowires. Phys. Rev. Lett. 101(21) (2008).
DOI: 10.1103/physrevlett.101.215502
Google Scholar
[7]
Zhan, H., Numerical Characterization of the Mechanical Properties of Metal Nanowires 2013, Queensland University of Technology.
Google Scholar
[8]
Jiang, J. -W., H.S. Park, and T. Rabczuk, Preserving the Q-factors of ZnO nanoresonators via polar surface reconstruction. Nanotechnology 24(40) (2013).
DOI: 10.1088/0957-4484/24/40/405705
Google Scholar
[9]
Georgakaki, D., O.G. Ziogos, and H.M. Polatoglou, Vibrational and mechanical properties of Si/Ge nanowires as resonators: A molecular dynamics study. physica status solidi (a) 211(2) (2014). 267-276.
DOI: 10.1002/pssa.201330087
Google Scholar
[10]
Plimpton, S., Fast Parallel Algorithms for Short-Range Molecular Dynamics. J Comp Phys 117 (1995). 1-19.
Google Scholar
[11]
Stukowski, A., Visualization and analysis of atomistic simulation data with OVITO - the Open Visualization Tool Modelling Simul. Mater. Sci. Eng. 18 (2010).
DOI: 10.1088/0965-0393/18/1/015012
Google Scholar
[12]
Faken, D. and H. Jónsson, Systematic analysis of local atomic structure combined with 3D computer graphics. Comput. Mater. Sci. 2(2) (1994). 279-286.
DOI: 10.1016/0927-0256(94)90109-0
Google Scholar
[13]
Mishin, Y., M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, and J.D. Kress, Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 63(22) (2001).
DOI: 10.1103/physrevb.63.224106
Google Scholar
[14]
Hsieh, J. -Y., S. -P. Ju, S. -H. Li, and C. -C. Hwang, Temperature dependence in nanoindentation of a metal substrate by a diamondlike tip. Phys. Rev. B 70(19) (2004).
DOI: 10.1103/physrevb.70.195424
Google Scholar
[15]
Zhang, L., C. Lu, G. Michal, K. Tieu, and K. Cheng, Molecular dynamics study on the atomic mechanisms of coupling motion of [0 0 1] symmetric tilt grain boundaries in copper bicrystal. Mater. Res. Express 1(1) (2014).
DOI: 10.1088/2053-1591/1/1/015019
Google Scholar
[16]
Tschopp, M. and D. McDowell, Structures and energies of Σ 3 asymmetric tilt grain boundaries in copper and aluminium. Philos. Mag. A 87(22) (2007). 3147-3173.
DOI: 10.1080/14786430701255895
Google Scholar
[17]
Tschopp, M. and D. McDowell, Asymmetric tilt grain boundary structure and energy in copper and aluminium. Philos. Mag. A 87(25) (2007). 3871-3892.
DOI: 10.1080/14786430701455321
Google Scholar
[18]
Vallabhaneni, A.K., X. Ruan, J.F. Rhoads, and J. Murthy, A band-pass filter approach within molecular dynamics for the prediction of intrinsic quality factors of nanoresonators. J. Appl. Phys. 112(7) (2012).
DOI: 10.1063/1.4754450
Google Scholar