Atomistic Study for the Vibrational Properties on Σ5 Symmetric Tilt Bicrystal Copper Nanowires

Article Preview

Abstract:

In this study, an atomistic simulation was performed to investigate intrinsic resonance propensity of clamped-clamped copper nanowires with Σ5 (310)/[001] symmetric tilt grain boundary. Grain boundary energy γGB for bicrystal structure was calculated based on an iterative approach. The stable atomic configuration was then doubly clamped and excited via flexural oscillation under varied temperatures. From the result, the appearance of grain boundary significantly alters the resonance properties of Cu nanowires. Greater attenuation in kinetic energy can be observed with increased temperature. Quality factors attains Q ~ 1/T0.7144 and 1/T0.7249 with temperatures from kinetic energy and centroid root mean square spectrum, respectively, where the former seems more reliable to employ at elevated temperatures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

193-198

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Duan, X., Y. Huang, R. Agarwal, and C.M. Lieber, Single-nanowire electrically driven lasers. Nature 421(6920) (2003). 241-245.

DOI: 10.1038/nature01353

Google Scholar

[2] Melosh, N.A., A. Boukai, F. Diana, B. Gerardot, A. Badolato, P.M. Petroff, and J.R. Heath, Ultrahigh-density nanowire lattices and circuits. Science 300(5616) (2003). 112-115.

DOI: 10.1126/science.1081940

Google Scholar

[3] Wu, W., S. Brongersma, M. Van Hove, and K. Maex, Influence of surface and grain-boundary scattering on the resistivity of copper in reduced dimensions. Appl. Phys. Lett. 84(15) (2004). 2838-2840.

DOI: 10.1063/1.1703844

Google Scholar

[4] Zhan, H. and Y. Gu, A fundamental numerical and theoretical study for the vibrational properties of nanowires. J. Appl. Phys. 111(12) (2012).

Google Scholar

[5] Olsson, P.A., Transverse resonant properties of strained gold nanowires. J. Appl. Phys. 108(3) (2010).

Google Scholar

[6] Kim, S.Y. and H.S. Park, Utilizing mechanical strain to mitigate the intrinsic loss mechanisms in oscillating metal nanowires. Phys. Rev. Lett. 101(21) (2008).

DOI: 10.1103/physrevlett.101.215502

Google Scholar

[7] Zhan, H., Numerical Characterization of the Mechanical Properties of Metal Nanowires 2013, Queensland University of Technology.

Google Scholar

[8] Jiang, J. -W., H.S. Park, and T. Rabczuk, Preserving the Q-factors of ZnO nanoresonators via polar surface reconstruction. Nanotechnology 24(40) (2013).

DOI: 10.1088/0957-4484/24/40/405705

Google Scholar

[9] Georgakaki, D., O.G. Ziogos, and H.M. Polatoglou, Vibrational and mechanical properties of Si/Ge nanowires as resonators: A molecular dynamics study. physica status solidi (a) 211(2) (2014). 267-276.

DOI: 10.1002/pssa.201330087

Google Scholar

[10] Plimpton, S., Fast Parallel Algorithms for Short-Range Molecular Dynamics. J Comp Phys 117 (1995). 1-19.

Google Scholar

[11] Stukowski, A., Visualization and analysis of atomistic simulation data with OVITO - the Open Visualization Tool Modelling Simul. Mater. Sci. Eng. 18 (2010).

DOI: 10.1088/0965-0393/18/1/015012

Google Scholar

[12] Faken, D. and H. Jónsson, Systematic analysis of local atomic structure combined with 3D computer graphics. Comput. Mater. Sci. 2(2) (1994). 279-286.

DOI: 10.1016/0927-0256(94)90109-0

Google Scholar

[13] Mishin, Y., M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, and J.D. Kress, Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 63(22) (2001).

DOI: 10.1103/physrevb.63.224106

Google Scholar

[14] Hsieh, J. -Y., S. -P. Ju, S. -H. Li, and C. -C. Hwang, Temperature dependence in nanoindentation of a metal substrate by a diamondlike tip. Phys. Rev. B 70(19) (2004).

DOI: 10.1103/physrevb.70.195424

Google Scholar

[15] Zhang, L., C. Lu, G. Michal, K. Tieu, and K. Cheng, Molecular dynamics study on the atomic mechanisms of coupling motion of [0 0 1] symmetric tilt grain boundaries in copper bicrystal. Mater. Res. Express 1(1) (2014).

DOI: 10.1088/2053-1591/1/1/015019

Google Scholar

[16] Tschopp, M. and D. McDowell, Structures and energies of Σ 3 asymmetric tilt grain boundaries in copper and aluminium. Philos. Mag. A 87(22) (2007). 3147-3173.

DOI: 10.1080/14786430701255895

Google Scholar

[17] Tschopp, M. and D. McDowell, Asymmetric tilt grain boundary structure and energy in copper and aluminium. Philos. Mag. A 87(25) (2007). 3871-3892.

DOI: 10.1080/14786430701455321

Google Scholar

[18] Vallabhaneni, A.K., X. Ruan, J.F. Rhoads, and J. Murthy, A band-pass filter approach within molecular dynamics for the prediction of intrinsic quality factors of nanoresonators. J. Appl. Phys. 112(7) (2012).

DOI: 10.1063/1.4754450

Google Scholar