Numerical Simulation of Aluminum Honeycomb Subjected to Combined Compression-Shear Loads

Article Preview

Abstract:

A full scale finite element (FE) analysis has been conducted on aluminum hexagonal honeycomb to investigate its deformation mechanism and mechanical performance under combined compression-shear loads. ANSYS LS/DYNA software has been employed in this numerical study. The honeycomb FE model has the same dimensions (cell size and cell wall thickness) as those used in the previous experimental study. The FE model has been verified by the experimental results. A good agreement between the experimental and numerical results has been reached. This numerical analysis facilitates the measurement of the vertical and horizontal forces applied to honeycomb specimens. The effects of strain rate, plane orientation of cell walls and loading angle on the plateau stress and energy absorption of honeycomb specimens under combined compression-shear loads were investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

211-216

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.J. Gibson, M.F. Ashby, Cellular solids: Structure and Properties, second ed., Cambridge, UK: Cambridge University Press, (1997).

Google Scholar

[2] D. Ruan, G. Lu, B. Wang, T.X. Yu, In-plane dynamic crushing of honeycombs—a finite element study, Int. J. Impact Eng. 28 (2003) 161-182.

DOI: 10.1016/s0734-743x(02)00056-8

Google Scholar

[3] H.X. Zhu, N.J. Mills, The in-plane non-linear compression of regular honeycombs, Int. J. Solids and Struct. 37 (2000) 1931-(1949).

DOI: 10.1016/s0020-7683(98)00324-2

Google Scholar

[4] O. Zhou, R.R. Mayer, Characterization of aluminum honeycomb material failure in large deformation compression, shear, and tearing, J. Eng. Mater. Tech. 124 (2002) 412-420.

DOI: 10.1115/1.1491575

Google Scholar

[5] M.K. Khan, T. Baig, S. Mirza, Experimental investigation of in-plane and out-of-plane crushing of aluminum honeycomb, Mater. Sci. Eng. A. 539 (2012) 135-142.

DOI: 10.1016/j.msea.2012.01.070

Google Scholar

[6] M. Ali, A. Qamhiyah, D. Flugrad, M. Shakoor, Theoretical and finite element study of a compact energy absorber, Adv. Eng. Softw. 39 (2008) 95-106.

DOI: 10.1016/j.advengsoft.2006.12.006

Google Scholar

[7] L. Hu, F. You, T. Yu, Effect of cell-wall angle on the in-plane crushing behaviour of hexagonal honeycombs, Mater. Design. 46 (2013) 511-523.

DOI: 10.1016/j.matdes.2012.10.050

Google Scholar

[8] Y. Wang, Elastic collapse of honeycombs under out-of-plane pressure, Int. J. Mech. Sci. 33 (1991) 637-644.

DOI: 10.1016/0020-7403(91)90033-y

Google Scholar

[9] T. Wierzbicki, Crushing analysis of metal honeycombs, Int. J. Impact Eng. 1 (1983) 157-174.

Google Scholar

[10] M. Yamashita, M. Gotoh, Impact behavior of honeycomb structures with various cell specifications - numerical simulation and experiment, Int. J. Impact Eng. 32 (2005) 618-630.

DOI: 10.1016/j.ijimpeng.2004.09.001

Google Scholar

[11] S. Xu, J.H. Beynon, D. Ruan, Finite element analysis of the dynamic behavior of aluminum honeycombs, Int. J. Comp. Meth-sing. 11 (2014).

Google Scholar

[12] S. Xu, J.H. Beynon, D. Ruan, G. Lu, Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs, Compos. Struct. 94 (2012) 2326-2336.

DOI: 10.1016/j.compstruct.2012.02.024

Google Scholar

[13] ASM Ashab, D. Ruan, G. Lu, S. Xu, C. Wen, Experimental investigation of the mechanical behavior of aluminum honeycombs under quasi-static and dynamic indentation, Mater. Design. 74 (2015) 138-149.

DOI: 10.1016/j.matdes.2015.03.004

Google Scholar

[14] S. Deqiang, Z. Weihong, W. Yanbin, Mean out-of-plane dynamic plateau stresses of hexagonal honeycomb cores under impact loadings, Compos. Struct. 92 (2010) 2609-2621.

DOI: 10.1016/j.compstruct.2010.03.016

Google Scholar

[15] D. Mohr, M. Doyoyo, A new method for the biaxial testing of cellular solids. Exp. Mech. 43 (2003) 173-182.

DOI: 10.1007/bf02410498

Google Scholar

[16] D. Mohr, M. Doyoyo, Experimental investigation on the plasticity of hexagonal aluminum honeycomb under multiaxial loading, J. Appl. Mech. 71 (2004) 375-385.

DOI: 10.1115/1.1683715

Google Scholar

[17] S.T. Hong, J. Pan, T. Tyan, P. Prasad, Quasi-static crush behavior of aluminum honeycomb specimens under non-proportional compression-dominant combined loads, Int. J. Plasticity. 22 (2006) 1062-1088.

DOI: 10.1016/j.ijplas.2005.07.003

Google Scholar

[18] S.T. Hong, J. Pan, T. Tyan, P. Prasad, Dynamic crush behaviors of aluminum honeycomb specimens under compression dominant inclined loads, Int. J. Plasticity. 24 (2008) 89-117.

DOI: 10.1016/j.ijplas.2007.02.003

Google Scholar

[19] B. Hou, A. Ono, S. Abdennadher, S. Pattofatto, Y.L. Li, H. Zhao, Impact behavior of honeycombs under combined shear-compression. Part I: Experiments, Int. J. Solids and Struct. 48 (2011) 687-697.

DOI: 10.1016/j.ijsolstr.2010.11.005

Google Scholar

[20] B. Hou, S. Pattofatto, Y.L. Li, H. Zhao, Impact behavior of honeycombs under combined shear-compression. Part II: Analysis, Int. J. Solids and Struct. 48 (2011) 698-705.

DOI: 10.1016/j.ijsolstr.2010.11.004

Google Scholar

[21] ASM Ashab, D. Ruan, G. Lu, Y.C. Wong, Combined Compression-Shear Behavior of Aluminum Honeycombs. Key Eng. Mater. 626 (2014) 127-132.

DOI: 10.4028/www.scientific.net/kem.626.127

Google Scholar

[22] ASM Ashab, D. Ruan, G. Lu, Y.C. Wong, Quasi-static and dynamic experiments of aluminum honeycombs under combined compression-shear loading, submitted to Mater. Design. (2015).

DOI: 10.1016/j.matdes.2016.02.074

Google Scholar

[23] ASM Ashab, D. Ruan, G. Lu, Y.C. Wong, Analysis of mechanical response of aluminium honeycomb subjected to indentation, ASME 2014 International Mechanical Engineering Congress and Exposition. Montreal, Quebec, Canada, November 14–20, (2014).

DOI: 10.1115/imece2014-36620

Google Scholar