The Biomechanical Responses of Mandibular Bone Installed with Fixed Partial Denture

Article Preview

Abstract:

This study aimed to evaluate the biomechanical responses in the peri-implant bony structure installed with the fixed partial dentures (FPDs). Unlike traditional configuration, the FPD considered here comprises a superstructure and is supported by three implants. The computational model of mandibular bone and the implant prosthesis were constructed based on patient-specific computerized tomography (CT) images and Computer Aided Design (CAD) tools. To better reflect the real clinical situation, the 3D real-time loading data of maximum voluntary clenching measured using piezo-electric force transducers in patient were adopted in the 3D finite element (FE) analyses (FEA). The von Mises equivalent stress, maximum shear stress, equivalent strain and strain energy density in the peri-implant bone regions are quantified. The peak stresses and strains in the peri-implant bone were observed around the neck of the implant, indicating risk of micro-motion and bone resorption. In this study, we successfully conducted a computational simulation in silico based on in vivo 3D force measurement of a specific patient. The results provided important biomechanical data for clinical treatment, potentially helping enhancing the longevity and reliability of the implant-supported FPD restoration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

276-281

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Kim, T.J. Oh, C.E. Misch, H.L. Wang, Occlusal considerations in implant therapy: clinical guidelines with biomechanical rationale, Clin. Oral. Implants. Research, 16 (2005) 26-35.

DOI: 10.1111/j.1600-0501.2004.01067.x

Google Scholar

[2] S.J. Hoshaw, J.B. Brunski, G. Cochran, Mechanical loading of Brånemark implants affects interfacial bone modeling and remodeling, Int. J. Oral. Maxillofac. Implants, 9 (1994) 345-360.

Google Scholar

[3] M. Nagasawa, R. Takano, T. Maeda, K. Uoshima, Observation of the bone surrounding an overloaded implant in a novel rat model, Int. J. Oral. Maxillofac. Implants, 28 (2013) 109-116.

DOI: 10.11607/jomi.2388

Google Scholar

[4] D. Lin, Q. Li, W. Li, M.V. Swain, Dental implant induced bone remodeling and associated algorithms, J. Mech. Behav. Biomed. Mater, 2 (2009) 410-432.

Google Scholar

[5] D. Lin, Q. Li, W. Li, N. Duckmanton, M.V. Swain, Mandibular bone remodeling induced by dental implant. J. Biomech, 43 (2010) 287-293.

DOI: 10.1016/j.jbiomech.2009.08.024

Google Scholar

[6] N. Yoda, Y. Gunji, T. Ogawa, T. Kawata, K. Sasaki, In vivo load measurement for evaluating the splinting effects of implant-supported superstructures: a pilot study, Int. J. Prosthodont, 26 (2013) 143-146.

DOI: 10.11607/ijp.3223

Google Scholar

[7] C. Rungsiyakull, Q. Li, G.Y. Sun, W. Li, M. Swain, Surface morphology optimization for osseointegration of coated implants, Biomaterials, 31 (2010): 7196-7204.

DOI: 10.1016/j.biomaterials.2010.05.077

Google Scholar

[8] J. Chen, C. Rungsiyakull, W. Li, Y. Chen, M. Swain, Q. Li, Multiscale design of surface morphological gradient for osseointegration, J. Mech. Behav. Biomed. Mater, 20 (2013): 387–397.

DOI: 10.1016/j.jmbbm.2012.08.019

Google Scholar

[9] J. Chen, R. Ahmad, H. Suenaga, W. Li, M.V. Swain, Q. Li. A comparative study on complete and implant retained denture treatments - A biomechanics perspective, J. Biomech, 48 (2014) 512-519.

DOI: 10.1016/j.jbiomech.2014.11.043

Google Scholar

[10] J. Chen, W. Li, M.V. Swain, M. Ali Darendeliler, Q. Li, A periodontal ligament driven remodeling algorithm for orthodontic tooth movement, J Biomech, 47 (2014) 1689-1695.

DOI: 10.1016/j.jbiomech.2014.02.030

Google Scholar

[11] F. Ramos Verri, J.F. Santiago Junior, D.A. de Faria Almeida, G.B. de Oliveira, V.E. de Souza Batista, H. Marques Honorio, P. Yoshito Noritomi, E. Piza Pellizzer, Biomechanical influence of crown-to-implant ratio on stress distribution over internal hexagon short implant: 3-D finite element analysis with statistical test, J Biomech, 48 (2015).

DOI: 10.1016/j.jbiomech.2014.10.021

Google Scholar

[12] S. Ishigaki, T. Nakano, S. Yamada, T. Nakamura, F. Takashima, Biomechanical stress in bone surrounding an implant under simulated chewing, Clin. Oral. Implants. Research, 14 (2003) 97-102.

DOI: 10.1034/j.1600-0501.2003.140113.x

Google Scholar

[13] V.A. Barao, J.A. Delben, J. Lima, T. Cabral, W.G. Assuncao, Comparison of different designs of implant-retained overdentures and fixed full-arch implant-supported prosthesis on stress distribution in edentulous mandible -a computed tomography-based three-dimensional finite element analysis, J. Biomech, 46 (2013).

DOI: 10.1016/j.jbiomech.2013.02.008

Google Scholar

[14] C. Rungsiyakull, J. Chen, P. Rungsiyakull, W. LI, M. Swain, Q. LI. Bone's responses to different designs of implant-supported fixed partial dentures, Biomech. Model. Mechanobiol, 14 (2015) 403-411.

DOI: 10.1007/s10237-014-0612-6

Google Scholar

[15] C. Field, Q. Li, W. Li, M.V. Swain, Influence of tooth removal on mandibular bone response to mastication, Arch. Oral. Biol, 53 (2008) 1129–1137.

DOI: 10.1016/j.archoralbio.2008.06.013

Google Scholar

[16] C. Field, Q. Li, W. Li, M Thompson, M.V. Swain, Prediction of mandibular bone remodelling induced by fixed partial dentures, J. biomech, 43 (2010) 1771-1779.

DOI: 10.1016/j.jbiomech.2010.02.016

Google Scholar