[1]
B. Shiari, R.E. Miller, D.D. Klug, Multiscale Simulation of Material Removal Processes at the Nanoscale, J Mech Phys Solids. 55 (2007) 2384-2405.
DOI: 10.1016/j.jmps.2007.03.018
Google Scholar
[2]
P. Spijker, G. Anciaux, J. -F. Molinari, The Effect of Loading on Surface Roughness at the Atomistic Level, Comput Mech. 50 (2012) 273-283.
DOI: 10.1007/s00466-011-0574-9
Google Scholar
[3]
T.D. Ta, A.K. Tieu, H. Zhu, B. Kosasih, Adsorption of Normal-Alkanes on Fe(110), Feo(110), and Fe2o3(0001): Influence of Iron Oxide Surfaces, The Journal of Physical Chemistry C. 119 (2015) 12999-13010.
DOI: 10.1021/acs.jpcc.5b01847
Google Scholar
[4]
X. Zheng, H. Zhu, A. Kiet Tieu, B. Kosasih, A Molecular Dynamics Simulation of 3d Rough Lubricated Contact, Tribology International. 67 (2013) 217-221.
DOI: 10.1016/j.triboint.2013.07.015
Google Scholar
[5]
X. Zheng, H. Zhu, A.K. Tieu, B. Kosasih, Roughness and Lubricant Effect on 3d Atomic Asperity Contact, Tribol Lett. 53 (2013) 215-223.
DOI: 10.1007/s11249-013-0259-y
Google Scholar
[6]
H.T. Zhu, X. Zheng, P.B. Kosasih, A.K. Tieu, Tribo-Surface Charge and Polar Lubricant Molecules on Friction and Lubrication under Multiple 3d Asperity Contacts, Wear. 332-333 (2015) 1248-1255.
DOI: 10.1016/j.wear.2015.02.045
Google Scholar
[7]
G. Anciaux, S.B. Ramisetti, J.F. Molinari, A Finite Temperature Bridging Domain Method for Md-Fe Coupling and Application to a Contact Problem, Comput Method Appl M. 205-208 (2012) 204-212.
DOI: 10.1016/j.cma.2011.01.012
Google Scholar
[8]
S. Qu, V. Shastry, W.A. Curtin, R.E. Miller, A Finite-Temperature Dynamic Coupled Atomistic/Discrete Dislocation Method, Model Simul Mater Sc. 13 (2005) 1101-1118.
DOI: 10.1088/0965-0393/13/7/007
Google Scholar
[9]
S.B. Ramisetti, G. Anciaux, J.F. Molinari, A Concurrent Atomistic and Continuum Coupling Method with Applications to Thermo-Mechanical Problems, Int J Numer Meth Eng. 97 (2014) 707-738.
DOI: 10.1002/nme.4606
Google Scholar
[10]
B.Q. Luan, S. Hyun, J.F. Molinari, N. Bernstein, M.O. Robbins, Multiscale Modeling of Two-Dimensional Contacts, Phys Rev E. 74 (2006) 046710.
DOI: 10.1103/physreve.74.046710
Google Scholar
[11]
R.E. Miller, E.B. Tadmor, A Unified Framework and Performance Benchmark of Fourteen Multiscale Atomistic/Continuum Coupling Methods, Model Simul Mater Sc. 17 (2009) 053001.
DOI: 10.1088/0965-0393/17/5/053001
Google Scholar
[12]
R. Tong, G. Liu, T. Liu, Multiscale Analysis on Two Dimensional Nanoscale Sliding Contacts of Textured Surfaces, Journal of Tribology. 133 (2011) 041401.
DOI: 10.1115/1.4004759
Google Scholar
[13]
G. Michal, C. Lu, A. Kiet Tieu, Multiscale Model of Elastic Nanocontacts, COMP MATER SCI. 81 (2014) 98-103.
DOI: 10.1016/j.commatsci.2013.06.053
Google Scholar
[14]
Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, J.D. Kress, Structural Stability and Lattice Defects in Copper: Ab Initio, Tight-Binding, and Embedded-Atom Calculations, Phys Rev B. 63 (2001).
DOI: 10.1103/physrevb.63.224106
Google Scholar
[15]
H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, Molecular Dynamics with Coupling to an External Bath, The Journal of Chemical Physics. 81 (1984) 3684-3690.
DOI: 10.1063/1.448118
Google Scholar
[16]
A. Stukowski, Visualization and Analysis of Atomistic Simulation Data with Ovito–the Open Visualization Tool, Model Simul Mater Sc. 18 (2010) 015012.
DOI: 10.1088/0965-0393/18/1/015012
Google Scholar
[17]
R.F. Voss, Fundamental Algorithms in Computer Graphics. Springr-Verlag, Berlin. (1985).
Google Scholar
[18]
B. Luan, M. Robbins, Hybrid Atomistic/Continuum Study of Contact and Friction between Rough Solids, Tribol Lett. 36 (2009) 1-16.
DOI: 10.1007/s11249-009-9453-3
Google Scholar
[19]
S. Cheng, M. Robbins, Defining Contact at the Atomic Scale, Tribol Lett. 39 (2010) 329-348.
DOI: 10.1007/s11249-010-9682-5
Google Scholar