Hertz Contact at the Nanoscale with a 3D Multiscale Model

Article Preview

Abstract:

This paper presents a three-dimensional multiscale computational model, which is proposed to combine the simplicity of FEM model and the atomistic interactions between two solids. A significant advantage of the model is that atoms are populated in the contact regions, which saves significant computation time compared to fully MD simulations. The model is used in the case of asperity contact. The normal displacement, contact radius and pressure distribution are compared with those from Hertz’s solution and atomistic simulations in the literature. Some important features of nanoscale contacts obtained by MD simulations can be caught by the model with acceptable accuracy and low computational cost.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

306-311

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Yang, B.N.J. Persson, Molecular Dynamics Study of Contact Mechanics: Contact Area and Interfacial Separation from Small to Full Contact, Phys. Rev. Lett. 100 (2008) 024303.

DOI: 10.1103/physrevlett.100.024303

Google Scholar

[2] B. Luan, M.O. Robbins, The Breakdown of Continuum Models for Mechanical Contacts, Nature. 435 (2005) 929-932.

DOI: 10.1038/nature03700

Google Scholar

[3] Y. Mo, K.T. Turner, I. Szlufarska, Friction Laws at the Nanoscale, Nature. 457 (2009) 1116-1119.

DOI: 10.1038/nature07748

Google Scholar

[4] G.J. Wagner, W.K. Liu, Coupling of Atomistic and Continuum Simulations Using a Bridging Scale Decomposition, J. Comput. Phys. 190 (2003) 249-274.

DOI: 10.1016/s0021-9991(03)00273-0

Google Scholar

[5] S.P. Xiao, T. Belytschko, A Bridging Domain Method for Coupling Continua with Molecular Dynamics, Comput. Method. Appl. M. 193 (2004) 1645-1669.

DOI: 10.1016/j.cma.2003.12.053

Google Scholar

[6] B.Q. Luan, S. Hyun, J.F. Molinari, N. Bernstein, and M.O. Robbins, Multiscale Modeling of Two-Dimensional Contacts, Phys. Rev. E. 74 (2006) 046710.

DOI: 10.1103/physreve.74.046710

Google Scholar

[7] G. Anciaux, J.F. Molinari, Contact Mechanics at the Nanoscale, a 3d Multiscale Approach, Int. J. Numer. Meth. Eng. 79 (2009) 1041-1067.

DOI: 10.1002/nme.2590

Google Scholar

[8] G. Michal, C. Lu, A. Kiet Tieu, Multiscale Model of Elastic Nanocontacts, Comp. Mater. Sci. 81 (2014) 98-103.

DOI: 10.1016/j.commatsci.2013.06.053

Google Scholar

[9] S. Tang, T.Y. Hou, W.K. Liu, A Mathematical Framework of the Bridging Scale Method, Int. J. Numer. Meth. Eng. 65 (2006) 1688-1713.

DOI: 10.1002/nme.1514

Google Scholar

[10] P. Spijker, G. Anciaux, J.F. Molinari, The Effect of Loading on Surface Roughness at the Atomistic Level, Comput. Mech. 50 (2012) 273-283.

DOI: 10.1007/s00466-011-0574-9

Google Scholar

[11] K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, (1985).

Google Scholar

[12] B. Luan, M.O. Robbins, Contact of Single Asperities with Varying Adhesion: Comparing Continuum Mechanics to Atomistic Simulations, Phys. Rev. E. 74 (2006) 026111.

DOI: 10.1103/physreve.74.026111

Google Scholar

[13] S. Cheng, B. Luan, M.O. Robbins, Contact and Friction of Nanoasperities: Effects of Adsorbed Monolayers, Phys. Rev. E. 81 (2010) 016102.

DOI: 10.1103/physreve.81.016102

Google Scholar

[14] S. Medina, D. Dini, A Numerical Model for the Deterministic Analysis of Adhesive Rough Contacts Down to the Nano-Scale, Int. J. Solids. Struct. 51 (2014) 2620-2632.

DOI: 10.1016/j.ijsolstr.2014.03.033

Google Scholar