Effect of Ground Mineralogy on Energy Pile Performance in Dense Sand

Article Preview

Abstract:

Geothermal energy piles have emerged as a cost effective and efficient solution for heating and cooling buildings through renewable energy. Although significant research effort has been dedicated to investigating the performance of these systems, the effect of ground mineralogy has received little attention. This study examines the likely performance of energy piles in dense sand with varying mineralogy. A 3D thermal discrete element model is used to determine the dry thermal conductivity of quartz, feldspar and mica rich sand. This is then used in a 2D finite element analysis to estimate the dissipation/extraction capacity of the soil surrounding a typical energy pile. A 35% increase in quartz content is predicted to result in 51% improvement in the thermal performance of a pile.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

325-330

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Katzenbach, F. Clauss, T. Waberseck, Sustainable and Efficient Energy Supply and Storage in Urban Areas, Geothermal Energy, the sixth China urban housing conference, Beijing, China. (2007).

Google Scholar

[2] J. Gao, X. Zhang, J. Liu, K. Li, J. Yang, Numerical and experimental assessment of thermal performance of vertical energy piles: An application, Appl. Energ., 85 (2008) 901-910.

DOI: 10.1016/j.apenergy.2008.02.010

Google Scholar

[3] I. W Johnston, G.A. Narsilio, S. Colls, Emerging geothermal energy technologies, KSCE J. Civ. Eng. 15 (2011) 643-653.

DOI: 10.1007/s12205-011-0005-7

Google Scholar

[4] K. Morino, T. Oka, Study on heat exchanged in soil by circulating water in a steel pile, Energy Build., 21 (1994) 65-78.

DOI: 10.1016/0378-7788(94)90017-5

Google Scholar

[5] H. Park, S.R. Lee, S. Yoon, J.C. Choi, Evaluation of thermal response and performance of PHC energy pile: Field experiments and numerical simulation, Appl. Energ., 103 (2013) 12-24.

DOI: 10.1016/j.apenergy.2012.10.012

Google Scholar

[6] Y. Hamada, H. Saitoh, M. Nakamura, H. Kubota, K. Ochifuji, Field performance of an energy pile system for space heating, Energy Build., 39 (2007) 517-524.

DOI: 10.1016/j.enbuild.2006.09.006

Google Scholar

[7] C.K. Lee, H.N. Lam, A simplified model of energy pile for ground-source heat pump systems, Energy, 55 (2013) 838-845.

DOI: 10.1016/j.energy.2013.03.077

Google Scholar

[8] A. Bouazza, R.M. Singh, B. Wang, D. Barry-Macaulay, C. Haberfield, G. Chapman, S. Baycan, Y. Carden, Harnessing on site renewable energy through pile foundations, Aust. Geomech., 46 (2011) 79.

DOI: 10.1061/9780784412121.452

Google Scholar

[9] W. Zhang, H. Yang, L. Lu, Z. Fang, The analysis on solid cylindrical heat source model of foundation pile ground heat exchangers with groundwater flow, Energy, 55 (2013) 417-425.

DOI: 10.1016/j.energy.2013.03.092

Google Scholar

[10] P. Cui, X. Li, Y. Man, Z. Fang, Heat transfer analysis of pile geothermal heat exchangers with spiral coils, Appl. Energ., 88 (2011) 4113-4119.

DOI: 10.1016/j.apenergy.2011.03.045

Google Scholar

[11] L. Laloui, M. Nuth, L. Vulliet, Experimental and numerical investigations of the behaviour of a heat exchanger pile, Int. J. Numer. Anal. Met., 30 (2006) 763-781.

DOI: 10.1002/nag.499

Google Scholar

[12] E.H. N Gashti, V.M. Uotinen, K. Kujala, Numerical modelling of thermal regimes in steel energy pile foundations: A case study, Energy Build., 69 (2014) 165-174.

DOI: 10.1016/j.enbuild.2013.10.028

Google Scholar

[13] T.J. Ahrens, Rock physics & phase relations: a handbook of physical constants, American Geophysical Union, Washington, D. C., (1995).

Google Scholar

[14] P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies, Géotechnique, 29 (1979) 47-65.

DOI: 10.1680/geot.1979.29.1.47

Google Scholar

[15] V. Šmilauer, E. Catalano, B. Chareyre, S. Dorofeenko, J. Duriez, A. Gladky, J. Kozicki, C. Modenese, L. Scholtès, L. Sibille, J. Stránský, K. Thoeni, Yade Documentation, The Yade Project, (2010).

Google Scholar

[16] P. Rognon, I. Einav, Thermal Transients and Convective Particle Motion in Dense Granular Materials, Phys. Rev. Lett., 105 (2010) 218-301.

DOI: 10.1103/physrevlett.105.218301

Google Scholar

[17] P.J. Bourne-Webb, B. Amatya, K. Soga, T. Amis, C. Davidson, P. Payne, Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles, Géotechnique, 59 (2009) 237-248.

DOI: 10.1680/geot.2009.59.3.237

Google Scholar

[18] R.D. Cook, Intuition-Software, VisualFEA and General User Manual, VisualFEA, Seol, (2001).

Google Scholar

[19] S. Chen, Thermal conductivity of sands, Heat and Mass Transfer, 44 (2008) 1241-1246.

DOI: 10.1007/s00231-007-0357-1

Google Scholar