[1]
R. Katzenbach, F. Clauss, T. Waberseck, Sustainable and Efficient Energy Supply and Storage in Urban Areas, Geothermal Energy, the sixth China urban housing conference, Beijing, China. (2007).
Google Scholar
[2]
J. Gao, X. Zhang, J. Liu, K. Li, J. Yang, Numerical and experimental assessment of thermal performance of vertical energy piles: An application, Appl. Energ., 85 (2008) 901-910.
DOI: 10.1016/j.apenergy.2008.02.010
Google Scholar
[3]
I. W Johnston, G.A. Narsilio, S. Colls, Emerging geothermal energy technologies, KSCE J. Civ. Eng. 15 (2011) 643-653.
DOI: 10.1007/s12205-011-0005-7
Google Scholar
[4]
K. Morino, T. Oka, Study on heat exchanged in soil by circulating water in a steel pile, Energy Build., 21 (1994) 65-78.
DOI: 10.1016/0378-7788(94)90017-5
Google Scholar
[5]
H. Park, S.R. Lee, S. Yoon, J.C. Choi, Evaluation of thermal response and performance of PHC energy pile: Field experiments and numerical simulation, Appl. Energ., 103 (2013) 12-24.
DOI: 10.1016/j.apenergy.2012.10.012
Google Scholar
[6]
Y. Hamada, H. Saitoh, M. Nakamura, H. Kubota, K. Ochifuji, Field performance of an energy pile system for space heating, Energy Build., 39 (2007) 517-524.
DOI: 10.1016/j.enbuild.2006.09.006
Google Scholar
[7]
C.K. Lee, H.N. Lam, A simplified model of energy pile for ground-source heat pump systems, Energy, 55 (2013) 838-845.
DOI: 10.1016/j.energy.2013.03.077
Google Scholar
[8]
A. Bouazza, R.M. Singh, B. Wang, D. Barry-Macaulay, C. Haberfield, G. Chapman, S. Baycan, Y. Carden, Harnessing on site renewable energy through pile foundations, Aust. Geomech., 46 (2011) 79.
DOI: 10.1061/9780784412121.452
Google Scholar
[9]
W. Zhang, H. Yang, L. Lu, Z. Fang, The analysis on solid cylindrical heat source model of foundation pile ground heat exchangers with groundwater flow, Energy, 55 (2013) 417-425.
DOI: 10.1016/j.energy.2013.03.092
Google Scholar
[10]
P. Cui, X. Li, Y. Man, Z. Fang, Heat transfer analysis of pile geothermal heat exchangers with spiral coils, Appl. Energ., 88 (2011) 4113-4119.
DOI: 10.1016/j.apenergy.2011.03.045
Google Scholar
[11]
L. Laloui, M. Nuth, L. Vulliet, Experimental and numerical investigations of the behaviour of a heat exchanger pile, Int. J. Numer. Anal. Met., 30 (2006) 763-781.
DOI: 10.1002/nag.499
Google Scholar
[12]
E.H. N Gashti, V.M. Uotinen, K. Kujala, Numerical modelling of thermal regimes in steel energy pile foundations: A case study, Energy Build., 69 (2014) 165-174.
DOI: 10.1016/j.enbuild.2013.10.028
Google Scholar
[13]
T.J. Ahrens, Rock physics & phase relations: a handbook of physical constants, American Geophysical Union, Washington, D. C., (1995).
Google Scholar
[14]
P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies, Géotechnique, 29 (1979) 47-65.
DOI: 10.1680/geot.1979.29.1.47
Google Scholar
[15]
V. Šmilauer, E. Catalano, B. Chareyre, S. Dorofeenko, J. Duriez, A. Gladky, J. Kozicki, C. Modenese, L. Scholtès, L. Sibille, J. Stránský, K. Thoeni, Yade Documentation, The Yade Project, (2010).
Google Scholar
[16]
P. Rognon, I. Einav, Thermal Transients and Convective Particle Motion in Dense Granular Materials, Phys. Rev. Lett., 105 (2010) 218-301.
DOI: 10.1103/physrevlett.105.218301
Google Scholar
[17]
P.J. Bourne-Webb, B. Amatya, K. Soga, T. Amis, C. Davidson, P. Payne, Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles, Géotechnique, 59 (2009) 237-248.
DOI: 10.1680/geot.2009.59.3.237
Google Scholar
[18]
R.D. Cook, Intuition-Software, VisualFEA and General User Manual, VisualFEA, Seol, (2001).
Google Scholar
[19]
S. Chen, Thermal conductivity of sands, Heat and Mass Transfer, 44 (2008) 1241-1246.
DOI: 10.1007/s00231-007-0357-1
Google Scholar