The Effect of Non-Local Approach in Simulating Cross-Weld Tensile Test Specimen

Article Preview

Abstract:

This paper is part of ‘through process modelling of welded aluminium’ project. It describes experimental and numerical investigation on butt-welded specimens of aluminium alloy AA6060. In the experiments, tensile test was used with Digital image correlation (DIC) technique to obtain full field strain measurement on the transversely loaded specimens. The tensile properties of these specimens are presented in terms of response curves. A user defined material was implemented in the explicit finite element code for the numerical calculations. The concept of non-local approach for plane stress analyses and the Cockroft Latham fracture criterion were used respectively to reduce mesh dependence of strain localization and to predict ductile fracture. The numerical results were compared to the experimental data and the measured and predicted response was evaluated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

482-487

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Lemaitre, A Continuous Damage Mechanics Model for Ductile Fracture, J. Eng. Mat. Tech., 107 (1985) 83–89.

Google Scholar

[2] T. Wang, O. S. Hopperstad, O. –G. Lademo, P. K. Larsen, Finite element analysis of welded beam-to –column joints in aluminium alloy EN AW 6082 T6, Finite Element Analysis 44 (2007) 1-16.

DOI: 10.1016/j.finel.2007.08.010

Google Scholar

[3] O. -G. Lademo, O. Engler, M. Eriksson, O. S. Hopperstad, T. Berstad, An experimental and numerical investigation on the applicability of the STM-2D model for rolled aluminium alloys, SINTEF report STF24 F04204 (2005) Trondheim.

Google Scholar

[4] C. Dørum, O. -G. Lademo, O. R. Myhr, T. Berstad, O. S. Hopperstad, Finite element analyses of plastic failure in heat-affected zone of welded aluminium connections, Computers and Structures 88 (2010) 519-528.

DOI: 10.1016/j.compstruc.2010.01.003

Google Scholar

[5] O. -G. Lademo, T. Berstad, T. Tryland, T. Furu, O. S. Hopperstad, M. Langseth, A model for process-based crash simulation. 8th International LS-DYNA User's Conference (2004) Detroit.

DOI: 10.1016/j.ijimpeng.2007.03.004

Google Scholar

[6] T. Belytschko, B. L. Wong, E. J. Plaskacz, Fission-fusion adaptivity in finite elements for nonlinear dynamics of shells, Computers and Structures 33 (1989) 1307–1323.

DOI: 10.1016/0045-7949(89)90468-9

Google Scholar

[7] W. D. Lockwood, B. Tomaz, A. P. Reynolds, Mater. Sci. Eng. A323 (2002) 348–353.

Google Scholar

[8] Livermore Software Technology Corporation (LSTC), LS-DYNA Keyword User's Manual, Version 970, (2003).

Google Scholar

[9] O. R. Myhr, Ø. Grong, H. G. Fjær, C. D. Marioara, Modelling of the microstructure and strength evolution in Al-Mg-Si alloys during multistage thermal processing, Acta Mater 52 (2004) 4997-5008.

DOI: 10.1016/j.actamat.2004.07.002

Google Scholar

[10] O. R. Myhr, Ø. Grong, K. O. Pedersen, A combined precipitation, yield strength and work hardening model for Al-Mg-Si alloys, Metallurgical and Materials Transactions A, 22 June (2010).

DOI: 10.1007/s11661-010-0258-7

Google Scholar

[11] A. Alisibramulisi, Through Process Modelling of Welded Aluminium Structures, Doctoral Thesis in Department of Structural Engineering, Norwegian University of Science and Technology (NTNU): Trondheim, Norway, (2013).

Google Scholar

[12] C. Dørum, O.S. Hopperstad, T. Berstad, D. Dispinar, Numerical modelling of magnesium die-castings using stochastic fracture parameters, Eng. Fract. Mech. 76 (2009) 2232–2248.

DOI: 10.1016/j.engfracmech.2009.07.001

Google Scholar

[13] C. Dørum, H.I. Laukli, O.S. Hopperstad, Through-process numerical simulations of the structural behaviour of Al–Si die-castings, Comput. Mater. Sci. 46 (2009) 100–111.

DOI: 10.1016/j.commatsci.2008.12.022

Google Scholar

[14] C. Dørum, H.I. Laukli, O.S. Hopperstad, M. Langseth, Structural behaviour of Al–Si die-castings: experiments and numerical simulations, Eur. J. Mech. A. Solids 28 (2009) 1–13.

DOI: 10.1016/j.euromechsol.2008.03.004

Google Scholar

[15] T. Belytchko, W. K. Liu, B. Moran, Nonlinear Finite Elements for Continua and Structures, Chichester: Wiley, (2000).

Google Scholar

[16] M.G. Cockcroft, D.J. Latham, Ductility and workability of metals, J. Inst. Met. 96 (1968) 33–39.

Google Scholar

[17] A. Reyes, M. Eriksson, O. -G. Lademo, O.S. Hopperstad, M. Langseth, Assessment of yield and fracture criteria using shear and bending tests, Mater. Des. 30 (3) (2009) 596–608.

DOI: 10.1016/j.matdes.2008.05.045

Google Scholar

[18] E. Fagerholt, C. Dørum, T. Børvik, H.I. Laukli, O.S. Hopperstad, Experimental and numerical investigation of fracture in a cast aluminium alloy, International Journal of Solids and Structures 47 (2010) 3352-3365.

DOI: 10.1016/j.ijsolstr.2010.08.013

Google Scholar

[19] G. Pijaudier-Cabot, Z.P. Bãzant, Nonlocal damage theory, J. Eng. Mech. 113 (1987) 1512–1533.

DOI: 10.1061/(asce)0733-9399(1987)113:10(1512)

Google Scholar