XFEM Fracture Modelling for Implant-Supported Fixed Partial Dentures

Article Preview

Abstract:

The dental implants have been increasingly used for replacing missing teeth over the past three decades. However, its mechanical strength remains a major concern to dental clinicians and patients. To investigate failure modes and fracture loads of implant-supported fixed partial bridge, eXtended Finite Element Method (XFEM) was employed in this study. The 3D finite element (FE) models simulating full mandibular teeth and implant-supported three-unit fixed partial denture (FPD) were developed to determine the crack initiation and propagation in the dental prostheses. The failure modes and fracture loads are compared for three typical treatment scenarios: namely three-unit FPD supported by two implants at left second premolar and first molar (named as cantilever Model-IIP), second premolar and second molar (bridge Model-IPI), and first and second molars (cantilever Model-PII). The XFEM analyses show that the bridge Model-IPI exhibited considerably high fracture resistance than the other two configurations. Model-IIP displays the worst fracture strength of these three case scenarios. The results provide a basis for clinical assessment of mechanical strength for implant-supported FPD or other restorative devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

488-493

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Al-Amleh, K. Lyons, M. Swain, Clinical trials in zirconia: a systematic review, J. Oral Rehabil., 37 (2010) 641-652.

DOI: 10.1111/j.1365-2842.2010.02094.x

Google Scholar

[2] I. Sailer, A. Feher, F. Filser, L.J. Gauckler, H. Luthy, C.H. Hammerle, Five-year clinical results of zirconia frameworks for posterior fixed partial dentures, Int. J. Prosthodont., 20 (2007) 383-388.

Google Scholar

[3] R. Glauser, I. Sailer, A. Wohlwend, S. Studer, M. Schibli, P. Scharer, Experimental zirconia abutments for implant-supported single-tooth restorations in esthetically demanding regions: 4-year results of a prospective clinical study, Int. J. Prosthodont., 17 (2004).

DOI: 10.1111/cid.12263

Google Scholar

[4] C.F. Stappert, M. Baldassarri, Y. Zhang, F. Hanssler, E.D. Rekow, P.T. Van, Reliability and fatigue failure modes of implant-supported aluminum-oxide fixed dental prostheses, Clin. Oral Implants Res., 23 (2012) 1173-1180.

DOI: 10.1111/j.1600-0501.2011.02281.x

Google Scholar

[5] D. Tortopidis, M.F. Lyons, R.H. Baxendale, W.H. Gilmour, The variability of bite force measurement between sessions, in different positions within the dental arch, J. Oral Rehabil., 25 (1998) 681-686.

DOI: 10.1046/j.1365-2842.1998.00293.x

Google Scholar

[6] M. Welander, I. Abrahamsson, T. Berglundh, The mucosal barrier at implant abutments of different materials, Clin. Oral Implants Res., 19 (2008) 635-641.

DOI: 10.1111/j.1600-0501.2008.01543.x

Google Scholar

[7] T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Meth., 45 (1999) 601-620.

DOI: 10.1002/(sici)1097-0207(19990620)45:5<601::aid-nme598>3.0.co;2-s

Google Scholar

[8] N. Moës, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing, Int. J. Numer. Meth., 46 (1999) 131-150.

DOI: 10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>3.0.co;2-j

Google Scholar

[9] I. Ichim, Q. Li, W. Li, M.V. Swain, J. Kieser, Modelling of fracture behaviour in biomaterials, Biomaterials, 28 (2007) 1317-1326.

DOI: 10.1016/j.biomaterials.2006.10.035

Google Scholar

[10] I. Ichim, Q. Li, J. Loughran, M.V. Swain, J. Kieser, Restoration of non-carious cervical lesions Part I. Modelling of restorative fracture, Dent. Mater., 23 (2007) 1553-1561.

DOI: 10.1016/j.dental.2007.02.003

Google Scholar

[11] I.P. Ichim, P.R. Schmidlin, Q. Li, J.A. Kieser, M.V. Swain, Restoration of non-carious cervical lesions Part II. Restorative material selection to minimise fracture, Dent. Mater., 23 (2007) 1562-1569.

DOI: 10.1016/j.dental.2007.02.002

Google Scholar

[12] W. Li, C. Rungsiyakull, Z. Zhang, S.W. Zhou, M.V. Swain, I. Ichim, Q. Li, Computational Fracture Modelling in Bioceramic Structures, Adv. Mat. Res., 268-270 (2011) 853-856.

DOI: 10.4028/www.scientific.net/amr.268-270.853

Google Scholar

[13] A. Barani, M.B. Bush, B.R. Lawn, Effect of property gradients on enamel fracture in human molar teeth, J. Mech. Behav. Biomed. Mater., 15 (2012) 121-130.

DOI: 10.1016/j.jmbbm.2012.06.014

Google Scholar

[14] A. Barani, A.J. Keown, M.B. Bush, J.J. Lee, H. Chai, B.R. Lawn, Mechanics of longitudinal cracks in tooth enamel, Acta Biomater., 7 (2011) 2285-2292.

DOI: 10.1016/j.actbio.2011.01.038

Google Scholar

[15] Z. Zhang, M. Guazzato, T. Sornsuwan, S.S. Scherrer, C. Rungsiyakull, W. Li, M.V. Swain, Q. Li, Thermally induced fracture for core-veneered dental ceramic structures, Acta Biomater., 9 (2013) 8394-8402.

DOI: 10.1016/j.actbio.2013.05.009

Google Scholar

[16] Z. Zhang, K. Zheng, E. Li, W. Li, Q. Li, M.V. Swain, Mechanical benefits of conservative restoration for dental fissure caries, J. Mech. Behav. Biomed. Mater., 53 (2015) 11-20.

DOI: 10.1016/j.jmbbm.2015.08.010

Google Scholar

[17] A.J. Raigrodski, Contemporary materials and technologies for all-ceramic fixed partial dentures: a review of the literature, J. Prosthet. Dent., 92 (2004) 557-562.

DOI: 10.1016/j.prosdent.2004.09.015

Google Scholar

[18] W. Li, M.V. Swain, Q. Li, G.P. Steven, Towards automated 3D finite element modeling of direct fiber reinforced composite dental bridge, J. Biomed. Mater. Res. B Appl. Biomater., 74 (2005) 520-528.

DOI: 10.1002/jbm.b.30233

Google Scholar

[19] C.H. Gibbs, P.E. Mahan, A. Mauderli, H.C. Lundeen, E.K. Walsh, Limits of human bite strength, J. Prosthet. Dent., 56 (1986) 226-229.

DOI: 10.1016/0022-3913(86)90480-4

Google Scholar

[20] W. Li, M.V. Swain, Q. Li, J. Ironside, G.P. Steven, Fibre reinforced composite dental bridge. Part II: Numerical investigation, Biomaterials, 25 (2004) 4995-5001.

DOI: 10.1016/j.biomaterials.2004.01.011

Google Scholar

[21] Z. Zhang, S. Zhou, Q. Li, W. Li, M.V. Swain, Sensitivity analysis of bi-layered ceramic dental restorations, Dent. Mater., 28 (2012) e6-14.

DOI: 10.1016/j.dental.2011.11.012

Google Scholar

[22] M. Thompson, Z. Zhang, C. Field, Q. Li, M. Swain, The all-ceramic, inlay supported fixed partial denture. Part 5. Extended finite element analysis validation, Aust. Dent. J., 58 (2013) 434-441.

DOI: 10.1111/adj.12107

Google Scholar

[23] Z. Zhang, S.W. Zhou, E. Li, W. Li, M.V. Swain, Q. Li, Design for minimizing fracture risk of all-ceramic cantilever dental bridge, Bio-Med. Mater. Eng., 26 (2015) S19-S25.

DOI: 10.3233/bme-151285

Google Scholar

[24] F.C.M. Driessens, R.M.H. Verbeeck, The mineral in tooth enamel and dental caries, in: F.C.M. Driessens, R.M.H. Verbeeck (Eds. ) Biominerals, CRC Press, Boca Raton, Florida, 1990, pp.105-161.

Google Scholar

[25] M. Baldassarri, Y. Zhang, V.P. Thompson, E.D. Rekow, C.F. Stappert, Reliability and failure modes of implant-supported zirconium-oxide fixed dental prostheses related to veneering techniques, J. Dent., 39 (2011) 489-498.

DOI: 10.1016/j.jdent.2011.04.006

Google Scholar

[26] O. Gabbert, E. Karatzogiannis, B. Ohlmann, M. Schmitter, J. Karl, P. Rammelsberg, Fracture load of tooth-implant-retained zirconia ceramic fixed dental prostheses: effect of span length and preparation design, Clin. Oral Implants Res., 23 (2012).

DOI: 10.1111/j.1600-0501.2011.02191.x

Google Scholar

[27] C. Rungsiyakull, Q. Li, G. Sun, W. Li, M.V. Swain, Surface morphology optimization for osseointegration of coated implants, Biomaterials, 31 (2010) 7196-7204.

DOI: 10.1016/j.biomaterials.2010.05.077

Google Scholar

[28] C. Rungsiyakull, J. Chen, P. Rungsiyakull, W. Li, M. Swain, Q. Li, Bone's responses to different designs of implant-supported fixed partial dentures, Biomech. Model Mechanobiol., 14 (2015) 403-411.

DOI: 10.1007/s10237-014-0612-6

Google Scholar