Microplane Model for Concrete: Part II - Applications on CFRP Confined Concrete Elements

Article Preview

Abstract:

In the paper the main results of numerical study presented in Gambarelli et al. [1] on concrete elements confined by carbon fiber reinforced polymer (CFRP), are overviewed. Furthermore, preliminary results of numerical simulations performed at mesoscale are presented.The numerical study is based on a extensively experimental campaign conducted by Wang and Wu [2] on small CFRP-confined concrete columns loaded in uni-axial compression. The specimens are characterized by constant size but different cross-section corner radius (from square to circular cross section). The experimental results clearly demonstrate that CFRP confinement is much less effective in square then in circular cross-section.Several numerical models have been performed at macro-scale and meso-scale to confirm the predictability of the used numerical approach, based on the microplane constitutive law for concrete [3]. In the finite element model carbon fibers (truss FE) are embedded into matrix (solid 3D FE). The same as for concrete, the constitutive law for matrix is also based on the microplane model.It is demonstrated that the numerical model is able to predict behavior of confined concrete columns from the experimental investigations. Therefore, the results of the study confirm the predictability of the used numerical approach.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

106-120

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Gambarelli, S., Nisticò, N., Ožbolt, J., Numerical analysis of compressed concrete columns confined with CFRP: Microplane-based approach, Composites, Part B 67 (2014), 303–312.

DOI: 10.1016/j.compositesb.2014.06.026

Google Scholar

[2] Wang, L-M. and Wu, Y-F., Effects of corner radius on the performance of CFRP-confined square concrete columns: Test, Engineering Structure, 16(4) (2008), 1-13.

DOI: 10.1016/j.engstruct.2007.04.016

Google Scholar

[3] Ožbolt, J., Li, Y. -J. and Kožar, I., Microplane model for concrete with relaxed kinematic constraint, International Journal of Solids and Structures, 38 (2001), 2683-2711.

DOI: 10.1016/s0020-7683(00)00177-3

Google Scholar

[4] Mirmiran, A., Shahawy, M., Samaan, M., El Echary, H., Mastrapa, J.C., Pico O., Effect of column parameters on FRP-confined concrete. J Compos Construct – ASCE, 2(4) (1998), 175–85.

DOI: 10.1061/(asce)1090-0268(1998)2:4(175)

Google Scholar

[5] Rochette, P., and  Labossière, P., Axial testing of rectangular column models confined with composites. J. Compos. Constr. 4(3) (2000), 129-136.

DOI: 10.1061/(asce)1090-0268(2000)4:3(129)

Google Scholar

[6] Pessiki, S., Harries K.A., Kestner, J.T., Sause, R., and Ricles, J.M., Axial behavior of reinforced concrete columns confined with FRP jackets. J. Compos. Constr. 5(4) (2001), 237-245.

DOI: 10.1061/(asce)1090-0268(2001)5:4(237)

Google Scholar

[7] Ilki A., and Kumbasar N., Compressive behavior of carbon fiber composite jacketed concrete with circular and non-circular cross-sections. J Earthquake Eng. 7(3) (2003), 381-406.

DOI: 10.1080/13632460309350455

Google Scholar

[8] Monti, G. and Nisticò, N., Square and rectangular concrete columns confined by CFRP: experimental and numerical investigation, Mech Compos Mater , 44(3) (2008), 289-308.

DOI: 10.1007/s11029-008-9021-1

Google Scholar

[9] Rousakis, T.C., Karabinis A.I., Substandard reinforced concrete members subjected to compression: FRP confining effects.  Materials and Structures 41 (2008), 1595-1611.

DOI: 10.1617/s11527-008-9351-4

Google Scholar

[10] Rousakis, T.C., Karabinis A.I., Adequately FRP confined reinforced concrete columns under axial compressive monotonic or cyclic loading. RILEM Materials and Structures, Springer Netherland, 45(7) (2012), 957-975.

DOI: 10.1617/s11527-011-9810-1

Google Scholar

[11] Nisticò, N. and Monti, G., R.C. square sections confined by FRP: analytical prediction of peak strength, Composites, 45(1) (2013), 127–37.

DOI: 10.1016/j.compositesb.2012.09.041

Google Scholar

[12] Nisticò, N., R.C. Square sections confined by FRP: A numerical procedure for predicting stress–strain relationships, Composites, Part B 59 (2014), 238–247.

DOI: 10.1016/j.compositesb.2013.12.004

Google Scholar

[13] Popovics, S., Mechanical Behaviour of Materials, Proceedings of the International conference on Mechanical Behaviour of Materials, IV, Japan, (1972), 172-183.

Google Scholar

[14] Popovics, S., A numerical approach to the complete stress-strain curve of concrete, Cement and Concrete Research, 3 (1973), 583-589.

DOI: 10.1016/0008-8846(73)90096-3

Google Scholar

[15] Mander, J.B., Priestley, M. J. N. and Park, R., Theoretical Stress-Strain Model for Confined Concrete, Journal of Structural Engineering, ASCE, 114(8) (1988), 1804-1826.

DOI: 10.1061/(asce)0733-9445(1988)114:8(1804)

Google Scholar

[16] Spoelstra, M. R. and Monti, G., FRP-Confined Concrete Model, ASCE Journal of Composites for Construction, V. 3 (1999), No. 3, 143-150.

DOI: 10.1061/(asce)1090-0268(1999)3:3(143)

Google Scholar

[17] Mirmiran, A., Zagers. K. and Yuan, W., Non-linear finite element modeling of concrete confined by fiber composites, Finite elements in Analysis and Design, 35 (2000), 79-96.

DOI: 10.1016/s0168-874x(99)00056-6

Google Scholar

[18] Rousakis, T. C., Karabinis, A.I. and Kiousis, P. D., FRP-confined concrete members: Axial compression experiments and plasticity modeling, Engineering Structures 29 (2007), 1343–1353.

DOI: 10.1016/j.engstruct.2006.08.006

Google Scholar

[19] Karabinis, A.I. and Kiousis, P. D., Effects of confinement on concrete columns: Plasticity approach, ASCE Journal of Structural Engineering, 120(9) (1994), 2747-67.

DOI: 10.1061/(asce)0733-9445(1994)120:9(2747)

Google Scholar

[20] Karabinis, A.I. and Kiousis, P. D., Strength and ductility of rectangular concrete columns- A plasticity approach, ASCE Journal of Structural Engineering, 122(3) (1996), 267-74.

DOI: 10.1061/(asce)0733-9445(1996)122:3(267)

Google Scholar

[21] Yu, T., Teng, J. G., Wong, Y. L. and Dong, S. L., Finite element modeling of confined concrete-I: Drucker-Prager type plasticity model, Eng. Struct, 32(3) (2010), 665-79.

DOI: 10.1016/j.engstruct.2009.11.014

Google Scholar

[22] Nisticò, N., Pallini, F., Rousakis, T.C., Wu, Y-F., Peak strength and ultimate strain prediction for FRP confined square and circular sections, Composites, Part B, 67 (2014), 543-554.

DOI: 10.1016/j.compositesb.2014.07.026

Google Scholar

[23] Gambarelli, S., Nisticò, N., Ožbolt, J., Microplane model for concrete: Part I. State of the art, Proceedings of the 2nd International Symposium on Advances in Civil and infrastructure Engineering (ACE), Vietri sul mare, (2015).

DOI: 10.4028/www.scientific.net/amm.847.95

Google Scholar

[24] Yang, X.B., Nanni, A. and Chen, G. D., Effect of corner radius on the performance of externally bonded FRP reinforcement, In: Proceedings of the 5th international conference on non-metallic reinforcement for concrete structures, (CD-ROM), (2001).

DOI: 10.1201/9781482271621-71

Google Scholar

[25] Bažant, Z. P. and Oh, B. H., Crack band theory for fracture of concrete, Materials and Structures, RILEM, 16(93) (1983), 155-177.

Google Scholar