Random Lattice Modeling of Quasi-Brittle Fracture in Cementitious Materials: A State of the Art

Article Preview

Abstract:

Lattice models established themselves as a powerful tool to simulate fracture processes in cementitious materials such as concrete. The paper presents the main features of this method, together with the advancements in the modeling of fracture of concrete materials. A historical perspective is also given, highlighting advantages and drawbacks of the existing fracture mechanics theories and numerical methods.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

121-127

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Neal, The Rapid Calculation of the Plastic Collapse Load for a Framed Structure, ICE Proceedings: Engineering Divisions 1 (1952) 58-71.

Google Scholar

[2] P. Symonds and B. Neal, Recent Progress in the Plastic Methods of Structural Analysis, Journal of the Franklin Institute 252 (1951) 469-492.

DOI: 10.1016/0016-0032(51)90049-x

Google Scholar

[3] ACI Committee, Fracture Mechanics of Concrete: Concepts, Models and Determination of Material Properties, Elsevier, (1992).

Google Scholar

[4] A. Griffith, The Phenomenon of Rupture and Flow in Solids, Philosophical Transactions of the Royal Society of London 221 (1921) 163-198.

Google Scholar

[5] A. Griffith, Theory of Rupture, 1st International Congress on Applied Mechanics (1924) 55-63.

Google Scholar

[6] G. Barrenblatt, The Formation of Equilibrium Cracks During Brittle Fracture, General Ideas and Hypothesis, Axially Symmetric Cracks, Journal of Applied Mathematics and Mechanics 22 (1959) 622-636.

DOI: 10.1016/0021-8928(59)90157-1

Google Scholar

[7] D. Dugdale, Yielding of Steel Sheets Containing Slits, Journal of Mechanics and Physics of Solids 8 (1960) 100-108.

DOI: 10.1016/0022-5096(60)90013-2

Google Scholar

[8] A. Hillerborg, M. Modèer and P. Petersson, Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements, Cement and Concrete Research 6 (1976) 773-781.

DOI: 10.1016/0008-8846(76)90007-7

Google Scholar

[9] A. Hillerborg, Analysis of one single crack, Fracture Mechanics of Concrete (Developments in civil engineering) (1983) 223-249.

Google Scholar

[10] A. Hillerborg, Numerical methods to simulate softening and fracture of concrete, Fracture mechanics of concrete: structural application and numerical calculation, Springer Netherlands (1985) 141-170.

DOI: 10.1007/978-94-009-6152-4_3

Google Scholar

[11] Z. Bazant, Instability, Ductility, and Size Effect in Strain-Softening Concrete, Journal of the Engineering Mechanics Division 12 (1976) 331-344.

DOI: 10.1061/jmcea3.0002111

Google Scholar

[12] Z. Bazant, Crack Band Model for Fracture of Geomaterials, 4th International Conference of Numerical Methods in Geomechanics 3 (1982) 1137-1152.

Google Scholar

[13] Z. Bazant and B. Oh, Crack Band Theory for Fracture of Concrete, Materials and Structures 16 (1983) 155-177.

Google Scholar

[14] A. Gupta and H. Akbar, Cracking in Reinforced Concrete Analysis, Journal of Structural Engineering 110 (1984) 1735-1741.

Google Scholar

[15] M. Ortiz, An analytical study of the localized failure modes of concrete, Mechanics of Materials 6 (1987) 159-174.

DOI: 10.1016/0167-6636(87)90006-8

Google Scholar

[16] Z. Bazant, T. Belytschko and T. Chang, Continuum Model for Strain-Softening, Journal of Engineering Mechanics 110 (1984) 1666-1692.

DOI: 10.1061/(asce)0733-9399(1984)110:12(1666)

Google Scholar

[17] H. Schreyer and Z. Chen, One-Dimensional Softening with Localization, Journal of Applied Mechanics 53 (1986) 791-797.

DOI: 10.1115/1.3171860

Google Scholar

[18] G. Pijaudier‐Cabot and Z. Bazant, Nonlocal Damage Theory, Journal of Engineering Mechanics 113 (1987) 1512-1533.

DOI: 10.1061/(asce)0733-9399(1987)113:10(1512)

Google Scholar

[19] Z. P. Bazant and G. Pijaudier-Cabot, Nonlocal Continuum Damage, Localization Instability and Convergence, Journal of Applied Mechanics 55 (1988) 287-293.

DOI: 10.1115/1.3173674

Google Scholar

[20] Z. Bazant and F. Lin, Nonlocal Smeared Cracking Model for Concrete Fracture, Journal of Structural Engineering 114 (1988) 2493-2510.

DOI: 10.1061/(asce)0733-9445(1988)114:11(2493)

Google Scholar

[21] G. Taylor, Plastic Strain in Metals, Journal of the Institute of Metals 62 (1938) 307-324.

Google Scholar

[22] Z. Bazant and B. Oh, Microplane Model for Progressive Fracture of Concrete and Rock, Journal of Engineering Mechanics 111 (1985) 559–582.

DOI: 10.1061/(asce)0733-9399(1985)111:4(559)

Google Scholar

[23] Z. Bazant and J. Ozbolt, Nonlocal Microplane Model for Fracture, Damage, and Size Effect in Structures, Journal of Engineering Mechanics 116 (1990) 2485-2505.

DOI: 10.1061/(asce)0733-9399(1990)116:11(2485)

Google Scholar

[24] S. Gambarelli, N. Nisticò and J. Ožbolt, Microplane Model for Concrete: Part I. State of the Art., in Advances in Civil and Infrastructure Engineering (2015).

DOI: 10.4028/www.scientific.net/amm.847.95

Google Scholar

[25] F. Wittman, P. Roelfstra and H. Sadouki, Simulation and Analysis of Composite Structures, Materials Science and Engineering 68 (1984) 239-248.

DOI: 10.1016/0025-5416(85)90413-6

Google Scholar

[26] P. Roelfstra, Numerical Analysis and Simulation of Crack Formation in Composite Materials such as Concrete, Fracture of Non-Metallic Materials (1987) 358-384.

DOI: 10.1007/978-94-009-4784-9_17

Google Scholar

[27] P. Roelfstra, H. Sadouki and F. Wittmann, Le Beton Numerique, Materials and Structures 107 (1985).

Google Scholar

[28] E. Schlangen and J. Van Mier, Simple Lattice Model for Numerical Simulation of Fracture of Concrete Materials and Structures, Materials and Structures 25 (1992) 534-542.

DOI: 10.1007/bf02472449

Google Scholar

[29] A. Hrennikoff, Solution of Problems of Elasticity by the Framework Method, Journal of Applied Mechanics 12 (1941) 169-175.

Google Scholar

[30] J. Bolander and N. Sukumar, Irregular Lattice Model for Quasistatic Crack Propagation, Physical Review B 71 (2005).

DOI: 10.1103/physrevb.71.094106

Google Scholar

[31] J. Bolander and S. Saito, Fracture Analyses Using Spring Networks with Random Geometry, Engineering Fracture Mechanics 61 (1998) 569-591.

DOI: 10.1016/s0013-7944(98)00069-1

Google Scholar

[32] J. Bolander, T. Shiraishi and Y. Isogawa, An Adaptive Procedure for Fracture Simulation in Extensive Lattice Networks, Engineering Fracture Mechanics 54 (1996) 325-334.

DOI: 10.1016/0013-7944(95)00200-6

Google Scholar

[33] M. Yip, J. Mohle and J. Bolander, Automated Modeling of Three-Dimensional Structural Components Using Irregular Lattices, Computer-Aided Civil and Infrastructure Engineering 20 (2005) 393-407.

DOI: 10.1111/j.1467-8667.2005.00407.x

Google Scholar

[34] T. Kawai, Some Considerations on the Finite Element Method, International Journal of Numerical Methods in Engineering 16 (1980) 81-120.

Google Scholar

[35] A. Serrano and J. Rodriguez-Ortiz, A Contribution to the Mechanics of Heterogeneous Granular Media, Proc. Symp. Plasticity and Soil Mechanics Cambridge 1 (1973).

Google Scholar

[36] P. Cundall, A Computer Model for Simulating Progressive Large Scale Movements in Blocky Rocks Systems, Proc. Symp. Int. Soc. Rock Mech. Nancy. 2 (1971).

Google Scholar

[37] P. Cundall, BALL - A Program to Model Granular Media Using the Distinct Element Media, Technical Note (1978).

Google Scholar

[38] P. Cundall and O. Strack, A Discrete Numerical Model for Granular Assemblies, Geotechnique 29 (1979) 47-65.

DOI: 10.1680/geot.1979.29.1.47

Google Scholar

[39] A. Zubelewicz and Z. Bazant, Interface Element Modeling of Fracture in Aggregate Composites, Journal of Engineering Mechanics 113 (1987) 1619-1630.

DOI: 10.1061/(asce)0733-9399(1987)113:11(1619)

Google Scholar

[40] Z. Bazant, M. Tabbara, M. T. Kazemi and G. Pijaudier-Cabot, Random Particle Model for Fracture of Aggregates or Fiber Composites, Journal of Engineering Mechanics 116 (1990) 1686-1705.

DOI: 10.1061/(asce)0733-9399(1990)116:8(1686)

Google Scholar

[41] G. Cusatis, Z. Bazant and L. Cedolin, Confinement-Shear Lattice Model for Concrete Damage in Tension and Compression: I. THeory, Journal of Engineering Mechanics 129 (2003) 1439-1448.

DOI: 10.1061/(asce)0733-9399(2003)129:12(1439)

Google Scholar

[42] G. Cusatis, Z. Bazant and L. Cedolin, Confinement-Shear Lattice Model for Concrete Damage in Tension and Compression: II. Computation and Validation, Journal of Engineering Mechanics 129 (2003) 1449-1458.

DOI: 10.1061/(asce)0733-9399(2003)129:12(1449)

Google Scholar

[43] G. Cusatis, Z. Bazant and L. Cedolin, Confinement-Shear Lattice CSL Model for Fracture Propagation in Concrete, Computer Methods in Applied Mechanics Engineering 195 (2006) 7154-7171.

DOI: 10.1016/j.cma.2005.04.019

Google Scholar

[44] G. Cusatis, D. Pelessone and A. Mencarelli, Lattice Discrete Particle Model (LDPM) for Failure Behavior of Concrete. I: Theory, Cement & Concrete Composites 33 (2011) 881-890.

DOI: 10.1016/j.cemconcomp.2011.02.011

Google Scholar

[45] G. Cusatis, A. Mencarelli, D. Pelessone and J. Baylot, Lattice Discrete Particle Model (LDPM) for Failure Behavior of Concrete. II: Calibration and Validation, Cement & Concrete Composites 33 (2011) 891-905.

DOI: 10.1016/j.cemconcomp.2011.02.010

Google Scholar