[1]
B. Neal, The Rapid Calculation of the Plastic Collapse Load for a Framed Structure, ICE Proceedings: Engineering Divisions 1 (1952) 58-71.
Google Scholar
[2]
P. Symonds and B. Neal, Recent Progress in the Plastic Methods of Structural Analysis, Journal of the Franklin Institute 252 (1951) 469-492.
DOI: 10.1016/0016-0032(51)90049-x
Google Scholar
[3]
ACI Committee, Fracture Mechanics of Concrete: Concepts, Models and Determination of Material Properties, Elsevier, (1992).
Google Scholar
[4]
A. Griffith, The Phenomenon of Rupture and Flow in Solids, Philosophical Transactions of the Royal Society of London 221 (1921) 163-198.
Google Scholar
[5]
A. Griffith, Theory of Rupture, 1st International Congress on Applied Mechanics (1924) 55-63.
Google Scholar
[6]
G. Barrenblatt, The Formation of Equilibrium Cracks During Brittle Fracture, General Ideas and Hypothesis, Axially Symmetric Cracks, Journal of Applied Mathematics and Mechanics 22 (1959) 622-636.
DOI: 10.1016/0021-8928(59)90157-1
Google Scholar
[7]
D. Dugdale, Yielding of Steel Sheets Containing Slits, Journal of Mechanics and Physics of Solids 8 (1960) 100-108.
DOI: 10.1016/0022-5096(60)90013-2
Google Scholar
[8]
A. Hillerborg, M. Modèer and P. Petersson, Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements, Cement and Concrete Research 6 (1976) 773-781.
DOI: 10.1016/0008-8846(76)90007-7
Google Scholar
[9]
A. Hillerborg, Analysis of one single crack, Fracture Mechanics of Concrete (Developments in civil engineering) (1983) 223-249.
Google Scholar
[10]
A. Hillerborg, Numerical methods to simulate softening and fracture of concrete, Fracture mechanics of concrete: structural application and numerical calculation, Springer Netherlands (1985) 141-170.
DOI: 10.1007/978-94-009-6152-4_3
Google Scholar
[11]
Z. Bazant, Instability, Ductility, and Size Effect in Strain-Softening Concrete, Journal of the Engineering Mechanics Division 12 (1976) 331-344.
DOI: 10.1061/jmcea3.0002111
Google Scholar
[12]
Z. Bazant, Crack Band Model for Fracture of Geomaterials, 4th International Conference of Numerical Methods in Geomechanics 3 (1982) 1137-1152.
Google Scholar
[13]
Z. Bazant and B. Oh, Crack Band Theory for Fracture of Concrete, Materials and Structures 16 (1983) 155-177.
Google Scholar
[14]
A. Gupta and H. Akbar, Cracking in Reinforced Concrete Analysis, Journal of Structural Engineering 110 (1984) 1735-1741.
Google Scholar
[15]
M. Ortiz, An analytical study of the localized failure modes of concrete, Mechanics of Materials 6 (1987) 159-174.
DOI: 10.1016/0167-6636(87)90006-8
Google Scholar
[16]
Z. Bazant, T. Belytschko and T. Chang, Continuum Model for Strain-Softening, Journal of Engineering Mechanics 110 (1984) 1666-1692.
DOI: 10.1061/(asce)0733-9399(1984)110:12(1666)
Google Scholar
[17]
H. Schreyer and Z. Chen, One-Dimensional Softening with Localization, Journal of Applied Mechanics 53 (1986) 791-797.
DOI: 10.1115/1.3171860
Google Scholar
[18]
G. Pijaudier‐Cabot and Z. Bazant, Nonlocal Damage Theory, Journal of Engineering Mechanics 113 (1987) 1512-1533.
DOI: 10.1061/(asce)0733-9399(1987)113:10(1512)
Google Scholar
[19]
Z. P. Bazant and G. Pijaudier-Cabot, Nonlocal Continuum Damage, Localization Instability and Convergence, Journal of Applied Mechanics 55 (1988) 287-293.
DOI: 10.1115/1.3173674
Google Scholar
[20]
Z. Bazant and F. Lin, Nonlocal Smeared Cracking Model for Concrete Fracture, Journal of Structural Engineering 114 (1988) 2493-2510.
DOI: 10.1061/(asce)0733-9445(1988)114:11(2493)
Google Scholar
[21]
G. Taylor, Plastic Strain in Metals, Journal of the Institute of Metals 62 (1938) 307-324.
Google Scholar
[22]
Z. Bazant and B. Oh, Microplane Model for Progressive Fracture of Concrete and Rock, Journal of Engineering Mechanics 111 (1985) 559–582.
DOI: 10.1061/(asce)0733-9399(1985)111:4(559)
Google Scholar
[23]
Z. Bazant and J. Ozbolt, Nonlocal Microplane Model for Fracture, Damage, and Size Effect in Structures, Journal of Engineering Mechanics 116 (1990) 2485-2505.
DOI: 10.1061/(asce)0733-9399(1990)116:11(2485)
Google Scholar
[24]
S. Gambarelli, N. Nisticò and J. Ožbolt, Microplane Model for Concrete: Part I. State of the Art., in Advances in Civil and Infrastructure Engineering (2015).
DOI: 10.4028/www.scientific.net/amm.847.95
Google Scholar
[25]
F. Wittman, P. Roelfstra and H. Sadouki, Simulation and Analysis of Composite Structures, Materials Science and Engineering 68 (1984) 239-248.
DOI: 10.1016/0025-5416(85)90413-6
Google Scholar
[26]
P. Roelfstra, Numerical Analysis and Simulation of Crack Formation in Composite Materials such as Concrete, Fracture of Non-Metallic Materials (1987) 358-384.
DOI: 10.1007/978-94-009-4784-9_17
Google Scholar
[27]
P. Roelfstra, H. Sadouki and F. Wittmann, Le Beton Numerique, Materials and Structures 107 (1985).
Google Scholar
[28]
E. Schlangen and J. Van Mier, Simple Lattice Model for Numerical Simulation of Fracture of Concrete Materials and Structures, Materials and Structures 25 (1992) 534-542.
DOI: 10.1007/bf02472449
Google Scholar
[29]
A. Hrennikoff, Solution of Problems of Elasticity by the Framework Method, Journal of Applied Mechanics 12 (1941) 169-175.
Google Scholar
[30]
J. Bolander and N. Sukumar, Irregular Lattice Model for Quasistatic Crack Propagation, Physical Review B 71 (2005).
DOI: 10.1103/physrevb.71.094106
Google Scholar
[31]
J. Bolander and S. Saito, Fracture Analyses Using Spring Networks with Random Geometry, Engineering Fracture Mechanics 61 (1998) 569-591.
DOI: 10.1016/s0013-7944(98)00069-1
Google Scholar
[32]
J. Bolander, T. Shiraishi and Y. Isogawa, An Adaptive Procedure for Fracture Simulation in Extensive Lattice Networks, Engineering Fracture Mechanics 54 (1996) 325-334.
DOI: 10.1016/0013-7944(95)00200-6
Google Scholar
[33]
M. Yip, J. Mohle and J. Bolander, Automated Modeling of Three-Dimensional Structural Components Using Irregular Lattices, Computer-Aided Civil and Infrastructure Engineering 20 (2005) 393-407.
DOI: 10.1111/j.1467-8667.2005.00407.x
Google Scholar
[34]
T. Kawai, Some Considerations on the Finite Element Method, International Journal of Numerical Methods in Engineering 16 (1980) 81-120.
Google Scholar
[35]
A. Serrano and J. Rodriguez-Ortiz, A Contribution to the Mechanics of Heterogeneous Granular Media, Proc. Symp. Plasticity and Soil Mechanics Cambridge 1 (1973).
Google Scholar
[36]
P. Cundall, A Computer Model for Simulating Progressive Large Scale Movements in Blocky Rocks Systems, Proc. Symp. Int. Soc. Rock Mech. Nancy. 2 (1971).
Google Scholar
[37]
P. Cundall, BALL - A Program to Model Granular Media Using the Distinct Element Media, Technical Note (1978).
Google Scholar
[38]
P. Cundall and O. Strack, A Discrete Numerical Model for Granular Assemblies, Geotechnique 29 (1979) 47-65.
DOI: 10.1680/geot.1979.29.1.47
Google Scholar
[39]
A. Zubelewicz and Z. Bazant, Interface Element Modeling of Fracture in Aggregate Composites, Journal of Engineering Mechanics 113 (1987) 1619-1630.
DOI: 10.1061/(asce)0733-9399(1987)113:11(1619)
Google Scholar
[40]
Z. Bazant, M. Tabbara, M. T. Kazemi and G. Pijaudier-Cabot, Random Particle Model for Fracture of Aggregates or Fiber Composites, Journal of Engineering Mechanics 116 (1990) 1686-1705.
DOI: 10.1061/(asce)0733-9399(1990)116:8(1686)
Google Scholar
[41]
G. Cusatis, Z. Bazant and L. Cedolin, Confinement-Shear Lattice Model for Concrete Damage in Tension and Compression: I. THeory, Journal of Engineering Mechanics 129 (2003) 1439-1448.
DOI: 10.1061/(asce)0733-9399(2003)129:12(1439)
Google Scholar
[42]
G. Cusatis, Z. Bazant and L. Cedolin, Confinement-Shear Lattice Model for Concrete Damage in Tension and Compression: II. Computation and Validation, Journal of Engineering Mechanics 129 (2003) 1449-1458.
DOI: 10.1061/(asce)0733-9399(2003)129:12(1449)
Google Scholar
[43]
G. Cusatis, Z. Bazant and L. Cedolin, Confinement-Shear Lattice CSL Model for Fracture Propagation in Concrete, Computer Methods in Applied Mechanics Engineering 195 (2006) 7154-7171.
DOI: 10.1016/j.cma.2005.04.019
Google Scholar
[44]
G. Cusatis, D. Pelessone and A. Mencarelli, Lattice Discrete Particle Model (LDPM) for Failure Behavior of Concrete. I: Theory, Cement & Concrete Composites 33 (2011) 881-890.
DOI: 10.1016/j.cemconcomp.2011.02.011
Google Scholar
[45]
G. Cusatis, A. Mencarelli, D. Pelessone and J. Baylot, Lattice Discrete Particle Model (LDPM) for Failure Behavior of Concrete. II: Calibration and Validation, Cement & Concrete Composites 33 (2011) 891-905.
DOI: 10.1016/j.cemconcomp.2011.02.010
Google Scholar