Analysis of Quantum Dot Vertical Cavity Semiconductor Optical Amplifier with Saturable Absorber

Article Preview

Abstract:

We analyze the bistable characteristics of quantum dot vertical cavity semiconductor optical amplifier integrated with saturable absorber. The device demonstrates bistable characteristics in the input-output powers which can be controlled by changing the voltage of the saturable absorber. We observe that the lower trigger level is more sensitive to variation of the absorption coefficient of the saturable absorber than that of upper trigger level. For clockwise and butterfly loops, we find that the upper and lower trigger levels increase as the absorption coefficient increases, and consequently the hysteresis width decreases. For counter clockwise, the upper and lower trigger levels decrease as the absorption coefficient increases and the corresponding hysteresis width increases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

100-104

Citation:

Online since:

August 2016

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Mishra, P. K. Datta and R. Pradhan, Modeling of Wavelength Conversion Using Switching Bistability in a Vertical Cavity Semiconductor Saturable Absorber, International Journal of Electronics and Electrical Engineering, 3, 396 (2015).

DOI: 10.12720/ijeee.3.5.396-401

Google Scholar

[2] G. D. Cole, E. S. Björlin, , Q. Chen, Chung-Yeung Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, MEMS-Tunable Vertical-Cavity SOAs, IEEE Journal of Quantum Electronics, 41, 390 (2005).

DOI: 10.1109/jqe.2004.841496

Google Scholar

[3] O. Qasaimeh, Effect of Doping on the Optical Characteristics of Quantum Dot Semiconductor Optical Amplifiers. IEEE J. Lightwave Tech. 27, 1978 (2009).

DOI: 10.1109/jlt.2008.2005589

Google Scholar

[4] L. Mishra, R. Pradhan , P.K. Datta, Modeling of two wavelength switching using a reflective vertical cavity semiconductor saturable absorber, Optics Communications, 331, 267 (2014).

DOI: 10.1016/j.optcom.2014.06.020

Google Scholar

[5] Antonio Hurtado, Ian D. Henning, and Michael J. Adams, Bistability and nonlinear gain in 1. 55mm vertical cavity semiconductor optical amplifiers: Theory and experiments, Applied Phys. Lett. 91, 151106 (2007).

DOI: 10.1063/1.2798053

Google Scholar

[6] C. F. Marki, D. R. Jorgesen, H. Zhang, P. Wen, and S. C. Esener, Observation of counterclockwise, clockwise and butterfly bistabilty in 1550 nm VCSOAs, Optics Express, 15, 4953 (2007).

DOI: 10.1364/oe.15.004953

Google Scholar

[7] A. Hurtado, A. Gonzalez-Marcos, and J. A. Martin-Pereda, Modeling Reflective Bistability in Vertical-Cavity Semiconductor Optical Amplifiers, IEEE Journal of Quantum Electronics, 41, 376 (2005).

DOI: 10.1109/jqe.2004.841500

Google Scholar

[8] E.S. Bjorlin, T. Kimura, Q. Chen, C. Wang and J.E. Bowers, High output power 1540nm vertical cavity semiconductor optical amplifiers, ELECTRONICS LETTERS, 40, 704 (2004).

DOI: 10.1049/el:20040097

Google Scholar

[9] E. Staffan Björlin, Toshio Kimura, and John E. Bowers, Carrier-Confined Vertical-Cavity Semiconductor Optical Amplifiers for Higher Gain and Efficiency, IEEE J. of Selected Topics in Quantum Electronics, 9, 1374 (2003).

DOI: 10.1109/jstqe.2003.819480

Google Scholar

[10] P. Royo, R. Koda, and L. A. Coldren, Vertical Cavity Semiconductor Optical Amplifiers: Comparison of Fabry–Pérot and Rate Equation Approaches, IEEE Journal of Quantum Electronics, 38, 279 (2002).

DOI: 10.1109/3.985569

Google Scholar