Crosstalk in Free Space Optical Interconnects that Use Micro-Lenses Arrays: Practical Consideration

Article Preview

Abstract:

The effect of positive spherical aberration of micro-lens on the optical crosstalk in free space optical interconnects is considered. Using the derived field distribution at the detector array, the optical crosstalk level is evaluated and numerical results are provided. It is found that practical lenses with positive spherical aberration increases the crosstalk and degrade the system performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-99

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Wang, Ke, et al. Experimental demonstration of high-speed free-space reconfigurable card-to-card optical interconnects., Optics express 21(3), 2850-2861, (2013).

DOI: 10.1364/oe.21.002850

Google Scholar

[2] Al-Ababneh, Nedal, and Shefa Tawalbeh. Optimizing bandwidth density in free space optical interconnects under the use of error correcting codes., Optical and Quantum Electronics 46(2), 271-282, (2014).

DOI: 10.1007/s11082-013-9758-1

Google Scholar

[3] Al-Ababneh, Nedal. Crosstalk reduction in free space optical interconnects systems using microlenses with Gaussian transmittance., Optics Communications 318, 79–82, (2014).

DOI: 10.1016/j.optcom.2013.12.063

Google Scholar

[4] Wenhua Hu, * Xiujian Li, Jiankun Yang, and Di Kong Crosstalk analysis of aligned and misaligned free-space optical interconnect systems, J. Opt. Soc. Am. A 27, 200-205, (2010).

DOI: 10.1364/josaa.27.000200

Google Scholar

[5] N. S. Petrovic´ and A. D. Rakic´, Modeling diffraction and imaging of laser beams by the mode-expansion method, J. Opt. Soc. Am. B 22, 556–566, (2005).

DOI: 10.1364/josab.22.000556

Google Scholar

[6] Tang, Suning; Chen, Ray T.; Garrett, Lara; Gerold, Dave; Li, Maggie M. Design limitations of highly parallel free-space optical interconnects based on array of vertical cavity surface-emitting laser diodes, microlenses, and photo detectors, J. Lightwave Technol. 12, 1971-1975, (1994).

DOI: 10.1109/50.336062

Google Scholar

[7] F. F. Tsai, C. J. O'Brien, N. S. Petrovic´, and A. D. Rakic´, Analysis of optical channel cross talk for free-space optical interconnects in the presence of higher-order transverse modes, Appl. Opt. 44, 6380–6387, (2005).

DOI: 10.1364/ao.44.006380

Google Scholar

[8] M. Châteauneuf, A. G. Kirk, D. V. Plant, T. Yamamoto, and J. D. Ahearn, 512-channel vertical-cavity surface-emitting laser-based free-space optical link, Appl. Opt. 41, 5552–5561, (2002).

DOI: 10.1364/ao.41.005552

Google Scholar

[9] R. Wong, A. D. Rakic, and M. L. Majewski, Design of microchannel free-space optical interconnects based on vertical-cavity surface-emitting laser arrays, Appl. Opt., 41( 17), 3469–3478, (2002).

DOI: 10.1364/ao.41.003469

Google Scholar

[10] Wyant, James C., and Katherine Creath. Basic wavefront aberration theory for optical metrology., Applied optics and optical engineering 11. s 29 (1992).

Google Scholar

[11] González-Galicia, M. A., et al. Effects of primary spherical aberration, coma, astigmatism, and field curvature on the focusing of ultrashort pulses: Gaussian illumination and experiment., JOSA A 28(10) , 1990-1994, (2011).

DOI: 10.1364/josaa.28.001990

Google Scholar

[12] Alkelly, Abdu A., H. Al-Nadary, and Ibraheem A. Alhijry. The intensity distribution of hollow Gaussian beams focused by a lens with spherical aberration., Optics Communications 284(1) 322-329, (2011).

DOI: 10.1016/j.optcom.2010.08.040

Google Scholar

[13] Alkelly, Abdu A. Spot size and radial intensity distribution of focused Gaussian beams in spherical and non-spherical aberration lenses., Optics communications 277(2), 397-405, (2007).

DOI: 10.1016/j.optcom.2007.05.031

Google Scholar

[14] Baida Lu, Xiangyang Tao, and Yiyou Nie Effect of quartic-phase aberrations on the focal switch of Hermite–Gaussian beams, Optik 116, 454–458, (2005).

DOI: 10.1016/j.ijleo.2005.02.015

Google Scholar

[15] Xiaoling Ji1, Baida Lu, Focal shift of flattened Gaussian beams passing through a spherically aberrated lens., Optik 113(5), 201–204, (2002).

DOI: 10.1078/0030-4026-00151

Google Scholar

[16] Rakesh Kumar Singh, P. Senthilkumaran, Kehar Singh, Focusing of a singular beam in the presence of spherical aberration and defocusing., Optik 119, 459–464, (2008).

DOI: 10.1016/j.ijleo.2006.11.012

Google Scholar

[17] Rakesh Kumar Singh, P. Senthilkumaran, Kehar Singh, Effect of coma on the focusing of an apertured singular beam., Optics and Lasers in Engineering 45, 488–494, (2007).

DOI: 10.1016/j.optlaseng.2006.10.004

Google Scholar

[18] Y. Cai S. He, Propagation of a Laguerre–Gaussian beam through a slightly misaligned paraxial optical system, Appl. Phys. B 84, 493–500, (2006).

DOI: 10.1007/s00340-006-2321-z

Google Scholar

[19] S. A. Collins, Lens-systems diffraction integral written in terms of matrix optics, J. Opt. Soc. Am. 60, 1168–1177, (1970).

DOI: 10.1364/josa.60.001168

Google Scholar