Crosstalk in Free Space Optical Interconnects that Use Micro-Lenses Arrays: Practical Consideration

Abstract:

Article Preview

The effect of positive spherical aberration of micro-lens on the optical crosstalk in free space optical interconnects is considered. Using the derived field distribution at the detector array, the optical crosstalk level is evaluated and numerical results are provided. It is found that practical lenses with positive spherical aberration increases the crosstalk and degrade the system performance.

Info:

Periodical:

Edited by:

Mahir Dursun

Pages:

95-99

Citation:

N. Al-Ababneh, "Crosstalk in Free Space Optical Interconnects that Use Micro-Lenses Arrays: Practical Consideration", Applied Mechanics and Materials, Vol. 850, pp. 95-99, 2016

Online since:

August 2016

Authors:

Export:

Price:

$41.00

* - Corresponding Author

[1] Wang, Ke, et al. Experimental demonstration of high-speed free-space reconfigurable card-to-card optical interconnects., Optics express 21(3), 2850-2861, (2013).

DOI: https://doi.org/10.1364/oe.21.002850

[2] Al-Ababneh, Nedal, and Shefa Tawalbeh. Optimizing bandwidth density in free space optical interconnects under the use of error correcting codes., Optical and Quantum Electronics 46(2), 271-282, (2014).

DOI: https://doi.org/10.1007/s11082-013-9758-1

[3] Al-Ababneh, Nedal. Crosstalk reduction in free space optical interconnects systems using microlenses with Gaussian transmittance., Optics Communications 318, 79–82, (2014).

DOI: https://doi.org/10.1016/j.optcom.2013.12.063

[4] Wenhua Hu, * Xiujian Li, Jiankun Yang, and Di Kong Crosstalk analysis of aligned and misaligned free-space optical interconnect systems, J. Opt. Soc. Am. A 27, 200-205, (2010).

DOI: https://doi.org/10.1364/josaa.27.000200

[5] N. S. Petrovic´ and A. D. Rakic´, Modeling diffraction and imaging of laser beams by the mode-expansion method, J. Opt. Soc. Am. B 22, 556–566, (2005).

DOI: https://doi.org/10.1364/josab.22.000556

[6] Tang, Suning; Chen, Ray T.; Garrett, Lara; Gerold, Dave; Li, Maggie M. Design limitations of highly parallel free-space optical interconnects based on array of vertical cavity surface-emitting laser diodes, microlenses, and photo detectors, J. Lightwave Technol. 12, 1971-1975, (1994).

DOI: https://doi.org/10.1109/50.336062

[7] F. F. Tsai, C. J. O'Brien, N. S. Petrovic´, and A. D. Rakic´, Analysis of optical channel cross talk for free-space optical interconnects in the presence of higher-order transverse modes, Appl. Opt. 44, 6380–6387, (2005).

DOI: https://doi.org/10.1364/ao.44.006380

[8] M. Châteauneuf, A. G. Kirk, D. V. Plant, T. Yamamoto, and J. D. Ahearn, 512-channel vertical-cavity surface-emitting laser-based free-space optical link, Appl. Opt. 41, 5552–5561, (2002).

DOI: https://doi.org/10.1364/ao.41.005552

[9] R. Wong, A. D. Rakic, and M. L. Majewski, Design of microchannel free-space optical interconnects based on vertical-cavity surface-emitting laser arrays, Appl. Opt., 41( 17), 3469–3478, (2002).

DOI: https://doi.org/10.1364/ao.41.003469

[10] Wyant, James C., and Katherine Creath. Basic wavefront aberration theory for optical metrology., Applied optics and optical engineering 11. s 29 (1992).

[11] González-Galicia, M. A., et al. Effects of primary spherical aberration, coma, astigmatism, and field curvature on the focusing of ultrashort pulses: Gaussian illumination and experiment., JOSA A 28(10) , 1990-1994, (2011).

[12] Alkelly, Abdu A., H. Al-Nadary, and Ibraheem A. Alhijry. The intensity distribution of hollow Gaussian beams focused by a lens with spherical aberration., Optics Communications 284(1) 322-329, (2011).

DOI: https://doi.org/10.1016/j.optcom.2010.08.040

[13] Alkelly, Abdu A. Spot size and radial intensity distribution of focused Gaussian beams in spherical and non-spherical aberration lenses., Optics communications 277(2), 397-405, (2007).

DOI: https://doi.org/10.1016/j.optcom.2007.05.031

[14] Baida Lu, Xiangyang Tao, and Yiyou Nie Effect of quartic-phase aberrations on the focal switch of Hermite–Gaussian beams, Optik 116, 454–458, (2005).

DOI: https://doi.org/10.1016/j.ijleo.2005.02.015

[15] Xiaoling Ji1, Baida Lu, Focal shift of flattened Gaussian beams passing through a spherically aberrated lens., Optik 113(5), 201–204, (2002).

DOI: https://doi.org/10.1078/0030-4026-00151

[16] Rakesh Kumar Singh, P. Senthilkumaran, Kehar Singh, Focusing of a singular beam in the presence of spherical aberration and defocusing., Optik 119, 459–464, (2008).

DOI: https://doi.org/10.1016/j.ijleo.2006.11.012

[17] Rakesh Kumar Singh, P. Senthilkumaran, Kehar Singh, Effect of coma on the focusing of an apertured singular beam., Optics and Lasers in Engineering 45, 488–494, (2007).

DOI: https://doi.org/10.1016/j.optlaseng.2006.10.004

[18] Y. Cai S. He, Propagation of a Laguerre–Gaussian beam through a slightly misaligned paraxial optical system, Appl. Phys. B 84, 493–500, (2006).

DOI: https://doi.org/10.1007/s00340-006-2321-z

[19] S. A. Collins, Lens-systems diffraction integral written in terms of matrix optics, J. Opt. Soc. Am. 60, 1168–1177, (1970).

DOI: https://doi.org/10.1364/josa.60.001168