Photocatalytic Effect of Metal Oxide Nanoparticles on Cultured Human Breast Cancer Cells

Article Preview

Abstract:

We have studied the photocatalytic effect of ZnO, TiO2 and CuO nanoparticles under the different wavelength of the light irradiation on the cultured human breast cancer cell line. Each nanoparticle under the different wavelength of irradiation on the cells shows the different cell-killing effect. It is found that ZnO nanoparticles irradiated under the ultraviolet C are more pronounced toxicity than CuO nanoparticles irradiated under the visible light, and TiO2 nanoparticles irradiated under the ultraviolet A, respectively. The intimate contact between the cell wall and the metal oxide nanoparticles under the appropriate light irradiation causes the changes in the environment in the vicinity of cell-nanoparticles contact area. This can generate the intracellular reactive oxidation species, partly due to the electron-hole pair, that tends to damage the nucleus of the cancer cells.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

144-148

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Chakravarti, J. Ravi, R. K. Ganju, Cannabinoids as therapeutic agents in cancer: Current status and future implications, Oncotarget, 5(15) (2014) 5852-5872.

DOI: 10.18632/oncotarget.2233

Google Scholar

[2] Information on http: /www. cancerresearchuk. org/health-professional/cancer-statistics.

Google Scholar

[3] J. W. Rasmussen, E. Martinez, P. Louka, D. G. Wingett, Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications, Expert Opin. Drug Deliv. 7(9) (2010) 1063-1077.

DOI: 10.1517/17425247.2010.502560

Google Scholar

[4] J. Lee, Y. H. Lee, J. S. Choi, K. S. Park, K. S. Chang, M. Yoon, Hydrothermal synthesis of defective TiO2 nanoparticles for long-wavelength visible light-photocatalytic killing of cancer cells, RSC Adv. 121 (2015) 99789-99796.

DOI: 10.1039/c5ra19045b

Google Scholar

[5] J. Ren, W. Wang, S. Sun, L. Zhang, L. Wang, J. Chang, Crystallography facet-dependent antibacterial activity: The case of Cu2O, Ind. Eng. Chem. Res. 50(17) (2011) 10366-10369.

DOI: 10.1021/ie2005466

Google Scholar

[6] Y. W. Wang, A. Cao, Y. Jiang, X. Zhang, J. H. Liu, Y. Liu, H. Wang, Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria, ACS Appl. Mater. Interf. 6(4) (2014).

DOI: 10.1021/am4053317

Google Scholar

[7] A. Nel, T. Xia, L. Madler, N. Li, Toxic potential of materials at the nanolevel, Sci. 311 (2006) 622-627.

DOI: 10.1126/science.1114397

Google Scholar

[8] H. B. Man, H. Kim, H. J. Kim, E. Robinson, W. K. Liu, E. K. H. Chow, D. Ho, Synthesis of nanodiamond-daunorubicin conjugates to overcome multidrug chemoresistance in leukemia, Nanomed. Nanotechnol. Biol. Med. 10 (2014) 359-369.

DOI: 10.1016/j.nano.2013.07.014

Google Scholar

[9] M. Heinlaan, A. Ivask, I. Blinova, H. C. Dubourguier, A. Kahru, Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus, Chemosphere, 71 (2008) 1308-1316.

DOI: 10.1016/j.chemosphere.2007.11.047

Google Scholar

[10] D. Das, B. C. Nath, P. Phukon, A. Kalita, S. K. Dolui, Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity, Coll. Surf. B: Biointerf. 111 (2013) 556-560.

DOI: 10.1016/j.colsurfb.2013.06.041

Google Scholar