About Transition Reynolds Number of Filtration Magnetophoresis Process

Article Preview

Abstract:

In this present work, the approaches providing establishment of transitional value of Reynolds number when filtering liquids in the magnetized granulated (polyspherical) matrix are considered. It is shown that value of transitional number of Reynolds by flow through the granulated matrix is not crisis for process of a magnetophoresis. It is confirmed on the example of magnetophoresis of ferroparticles in water suspension, thermal power plant condensate, liquid ammonia. It is established that the effective of magnetophoresis could be performed also in case of Reynolds's values much more than determined hydrodynamic Reynolds number. It significantly expands idea of the beginning of crisis of the magnetophoresis regime and allows to receive the limiting filtering speed for any media passed through a zone of a filter magnetophoresis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

127-131

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. A. Sandulyak, V. V. Sleptsov, A. A. Sandulyak, A. V. Sandulyak, V. A. Ershova, A. V. Doroshenko, Filtration Magnetophoresis Process: an Approach to Choosing a Speed Regime / Proceedings of the International Conference on Recent Advances in Mechanics, Mechatronics and Civil, Chemical and Industrial Engineering, 2015, 16-20 July, Zakintos, Greece, ISBN: 978-1-61804-325-2, pp.72-76.

DOI: 10.4028/www.scientific.net/amm.851.127

Google Scholar

[2] A. Newns, R. D. Pascoe, Influence of path length and slurry velocity on the removal of iron from kaolin using a high gradient magnetic separator, Minerals Eng. 15(6) (2002) 465-467.

DOI: 10.1016/s0892-6875(02)00056-0

Google Scholar

[3] T. Y. Ying, S. Yiacoumi, C. Tsouris, High-gradient magnetically seeded filtration, Chem. Eng. Sci. 55(6) (2000) 1101-1113.

DOI: 10.1016/s0009-2509(99)00383-8

Google Scholar

[4] J. Svoboda, A realistic description of the process of high-gradient magnetic separation. Minerals Eng. 14(11) (2001) 1493-1503.

DOI: 10.1016/s0892-6875(01)00162-5

Google Scholar

[5] S. Arajs, C. A. Moyer, R. Aidun, E. Matijevic, Magnetic filtration of submicroscopic particles through a packed bed of spheres, J. Appl. Phys. 57(8) (1985) 4286.

DOI: 10.1063/1.334587

Google Scholar

[6] J. A. Ritter, A. D. Ebner, D. D. Karen, L. S. Krystle, Application of high gradient magnetic separation principles to magnetic drug targeting, J. Magn. Magn. Mater. 280(2-3) (2004) 184-201.

DOI: 10.1016/j.jmmm.2004.03.012

Google Scholar

[7] H. Chen, D. Bockenfeld, D. Rempfer, M. D. Kaminski, X. Liu, A. J. Rosengart, Preliminary 3-D analysis of a high gradient magnetic separator for biomedical applications, J. Magn. Magn. Mater. 320(3-4) (2008) 279-284.

DOI: 10.1016/j.jmmm.2007.06.001

Google Scholar

[8] H. Chen, A. D. Ebner, M. D. Kaminski, A. J. Rosengart, J. A. Ritter, Analysis of magnetic drug carrier particle capture by a magnetizable intravascular stent – 2: Parametric study with multi-wire two-dimensional model, J. Magn. Magn. Mater. 293(1) (2005).

DOI: 10.1016/j.jmmm.2005.01.080

Google Scholar

[9] K. Nandy, S. Chaudhuri, R. Ganguly, I. K. Puri, Analytical model for the magnetophoretic capture of magnetic microspheres in microfluidic devices, J. Magn. Magn. Mater. 320(7) (2008) 1398-1405.

DOI: 10.1016/j.jmmm.2007.11.024

Google Scholar

[10] N. Pamme, A. Manz, O-chip free-flow magnetophoresis: Continuous flow separation of magnetic particles and agglomerates, Anal. Chem. 76 (24) (2004) 7250-7256.

DOI: 10.1021/ac049183o

Google Scholar

[11] J. Ravnik, M. Hriberšek, High gradient magnetic particle separation in viscous flows by 3D BEM, Comput. Mech. 51(4) (2013) 465-474.

DOI: 10.1007/s00466-012-0729-3

Google Scholar

[12] X. Y. Wu, H. Y. Wu, Y. D. Hu, Enhancement of separation efficiency on continuous magnetophoresis by utilizing L/T-shaped microchannels, Microfluid. Nanofluidics 11(1) (2011) 11-24.

DOI: 10.1007/s10404-011-0768-7

Google Scholar

[13] A. V. Sandulyak, Magneto-filtration purification of liquids and gases, Moscow: Chemistry. 1988, 133.

Google Scholar

[14] A. V. Sandulyak, V. I. Garaschenko, O. Y. Korkhov, Method of Determining the Quantity of Solid Fraction of Ferromagnetic Matter in a Fluid, Patent 4492921 US, (1985).

Google Scholar

[15] A. V. Sandulyak, A. A. Sandulyak, V. A. Ershova, Magnetization Curve of a Granulated Medium in Terms of the Channel-by-Channel Magnetization Model (New Approach), Doklady Phys. 52(4) (2007) 179–181.

DOI: 10.1134/s1028335807040027

Google Scholar

[16] A. V. Sandulyak, A. A. Sandulyak, V. A. Ershova, On the model of channel-by-channel magnetization of a granular medium (with a radial permeability profile of a quasi-continuous channel). Technical Physics, 54(5) (2009) 743 – 745.

DOI: 10.1134/s1063784209050235

Google Scholar

[17] A. A. Sandulyak, V. A. Ershova, D. V. Ershov, A. V. Sandulyak, On the properties of short granular magnets with unordered granule chains: a field between the granules, Solid State Phys. 52(10) (2010) 1967-(1974).

DOI: 10.1134/s106378341010015x

Google Scholar

[18] A. A. Sandulyak, A. V. Sandulyak, D. Oreshkin, M. Popova, Applied Model of Magnetization of a Granulated Material, Appl. Mech. Mater. 467 (2014) 76-80.

DOI: 10.4028/www.scientific.net/amm.467.76

Google Scholar