[1]
D. A. Sandulyak, V. V. Sleptsov, A. A. Sandulyak, A. V. Sandulyak, V. A. Ershova, A. V. Doroshenko, Filtration Magnetophoresis Process: an Approach to Choosing a Speed Regime / Proceedings of the International Conference on Recent Advances in Mechanics, Mechatronics and Civil, Chemical and Industrial Engineering, 2015, 16-20 July, Zakintos, Greece, ISBN: 978-1-61804-325-2, pp.72-76.
DOI: 10.4028/www.scientific.net/amm.851.127
Google Scholar
[2]
A. Newns, R. D. Pascoe, Influence of path length and slurry velocity on the removal of iron from kaolin using a high gradient magnetic separator, Minerals Eng. 15(6) (2002) 465-467.
DOI: 10.1016/s0892-6875(02)00056-0
Google Scholar
[3]
T. Y. Ying, S. Yiacoumi, C. Tsouris, High-gradient magnetically seeded filtration, Chem. Eng. Sci. 55(6) (2000) 1101-1113.
DOI: 10.1016/s0009-2509(99)00383-8
Google Scholar
[4]
J. Svoboda, A realistic description of the process of high-gradient magnetic separation. Minerals Eng. 14(11) (2001) 1493-1503.
DOI: 10.1016/s0892-6875(01)00162-5
Google Scholar
[5]
S. Arajs, C. A. Moyer, R. Aidun, E. Matijevic, Magnetic filtration of submicroscopic particles through a packed bed of spheres, J. Appl. Phys. 57(8) (1985) 4286.
DOI: 10.1063/1.334587
Google Scholar
[6]
J. A. Ritter, A. D. Ebner, D. D. Karen, L. S. Krystle, Application of high gradient magnetic separation principles to magnetic drug targeting, J. Magn. Magn. Mater. 280(2-3) (2004) 184-201.
DOI: 10.1016/j.jmmm.2004.03.012
Google Scholar
[7]
H. Chen, D. Bockenfeld, D. Rempfer, M. D. Kaminski, X. Liu, A. J. Rosengart, Preliminary 3-D analysis of a high gradient magnetic separator for biomedical applications, J. Magn. Magn. Mater. 320(3-4) (2008) 279-284.
DOI: 10.1016/j.jmmm.2007.06.001
Google Scholar
[8]
H. Chen, A. D. Ebner, M. D. Kaminski, A. J. Rosengart, J. A. Ritter, Analysis of magnetic drug carrier particle capture by a magnetizable intravascular stent – 2: Parametric study with multi-wire two-dimensional model, J. Magn. Magn. Mater. 293(1) (2005).
DOI: 10.1016/j.jmmm.2005.01.080
Google Scholar
[9]
K. Nandy, S. Chaudhuri, R. Ganguly, I. K. Puri, Analytical model for the magnetophoretic capture of magnetic microspheres in microfluidic devices, J. Magn. Magn. Mater. 320(7) (2008) 1398-1405.
DOI: 10.1016/j.jmmm.2007.11.024
Google Scholar
[10]
N. Pamme, A. Manz, O-chip free-flow magnetophoresis: Continuous flow separation of magnetic particles and agglomerates, Anal. Chem. 76 (24) (2004) 7250-7256.
DOI: 10.1021/ac049183o
Google Scholar
[11]
J. Ravnik, M. Hriberšek, High gradient magnetic particle separation in viscous flows by 3D BEM, Comput. Mech. 51(4) (2013) 465-474.
DOI: 10.1007/s00466-012-0729-3
Google Scholar
[12]
X. Y. Wu, H. Y. Wu, Y. D. Hu, Enhancement of separation efficiency on continuous magnetophoresis by utilizing L/T-shaped microchannels, Microfluid. Nanofluidics 11(1) (2011) 11-24.
DOI: 10.1007/s10404-011-0768-7
Google Scholar
[13]
A. V. Sandulyak, Magneto-filtration purification of liquids and gases, Moscow: Chemistry. 1988, 133.
Google Scholar
[14]
A. V. Sandulyak, V. I. Garaschenko, O. Y. Korkhov, Method of Determining the Quantity of Solid Fraction of Ferromagnetic Matter in a Fluid, Patent 4492921 US, (1985).
Google Scholar
[15]
A. V. Sandulyak, A. A. Sandulyak, V. A. Ershova, Magnetization Curve of a Granulated Medium in Terms of the Channel-by-Channel Magnetization Model (New Approach), Doklady Phys. 52(4) (2007) 179–181.
DOI: 10.1134/s1028335807040027
Google Scholar
[16]
A. V. Sandulyak, A. A. Sandulyak, V. A. Ershova, On the model of channel-by-channel magnetization of a granular medium (with a radial permeability profile of a quasi-continuous channel). Technical Physics, 54(5) (2009) 743 – 745.
DOI: 10.1134/s1063784209050235
Google Scholar
[17]
A. A. Sandulyak, V. A. Ershova, D. V. Ershov, A. V. Sandulyak, On the properties of short granular magnets with unordered granule chains: a field between the granules, Solid State Phys. 52(10) (2010) 1967-(1974).
DOI: 10.1134/s106378341010015x
Google Scholar
[18]
A. A. Sandulyak, A. V. Sandulyak, D. Oreshkin, M. Popova, Applied Model of Magnetization of a Granulated Material, Appl. Mech. Mater. 467 (2014) 76-80.
DOI: 10.4028/www.scientific.net/amm.467.76
Google Scholar