[1]
L. O. Salmazo, A. L. Gil, F. S. Bellucci, A. E. Job, M. A. R. Perez, Natural rubber foams with anisotropic cellular structures: Mechanical properties and modeling, Ind. Crops Prod. 80 (2016) 26–35.
DOI: 10.1016/j.indcrop.2015.10.050
Google Scholar
[2]
N. González, M. À. Custal, S. Lalaouna, J. R. Riba, E. Armelin, Improvement of dielectric properties of natural rubber by adding perovskite nanoparticles, Eur. Polym. J. 75 (2016) 210–222.
DOI: 10.1016/j.eurpolymj.2015.12.023
Google Scholar
[3]
W. Chumeka, P. Pasetto, J. Pilard, V. Tanrattanakul, Bio-based triblock copolymers from natural rubber and poly(lactic acid): Synthesis and application in polymer blending, Polymer. 55 (2014) 4478–4487.
DOI: 10.1016/j.polymer.2014.06.091
Google Scholar
[4]
S. Yaragalla, A. P. Meera, N. Kalarikkal, S. Thomas, Chemistry associated with natural rubber–graphene nanocomposites and its effect on physical and structural properties, Ind Crops Prod. 74 (2015) 792–802.
DOI: 10.1016/j.indcrop.2015.05.079
Google Scholar
[5]
K. Pal, R. Rajasekar, D. J. Kang, Z. X. Zhang, S. K. Pal, C. K. Das, J. K. Kim, Effect of fillers on natural rubber/high styrene rubber blends with nano silica: Morphology and wear, Mater. Des. 31 (2010) 677–686.
DOI: 10.1016/j.matdes.2009.08.014
Google Scholar
[6]
P. Tangudom, S. Thongsang, N. Sombatsompop, Cure and mechanical properties and abrasive wear behavior of natural rubber, styrene–butadiene rubber and their blends reinforced with silica hybrid fillers, Mater. Des. 53 (2014) 856–864.
DOI: 10.1016/j.matdes.2013.07.024
Google Scholar
[7]
K. Formela, M. Marć, J. Namieśnik, B. Zabiegała. The estimation of total volatile organic compounds emissions generated from peroxide-cured natural rubber/polycaprolactone blends, Microchem. J. 127 (2016) 30–35.
DOI: 10.1016/j.microc.2016.02.001
Google Scholar
[8]
V. S. Vinod, S. Varghese, B. Kuriakose, Degradation behavior of natural rubber–aluminium powder composites: effect of heat, ozone and high energy radiation, Polym. Degrad. Stab. 75 (2002) 405–412.
DOI: 10.1016/s0141-3910(01)00228-2
Google Scholar
[9]
C. Kehlet, A. Catalano, J. Dittmer, Degradation of natural rubber in works of art studied by unilateral NMR and high field NMR spectroscopy, Polym. Degrad. Stab. 107 (2014) 270–276.
DOI: 10.1016/j.polymdegradstab.2013.12.039
Google Scholar
[10]
N. T. Thuong, Y. Yamamoto, P. T. Nghia, S. Kawahara, Analysis of damage in commercial natural rubber through NMR spectroscopy, Polym. Degrad. Stab. 123 (2016) 155–161.
DOI: 10.1016/j.polymdegradstab.2015.11.025
Google Scholar
[11]
S. Tuampoemsab, A. Nimpaiboon, J. T. Sakdapipanich, Quantitative analysis of isoprene units in natural rubber and synthetic polyisoprene using 1H-NMR spectroscopy with an internal standard, Polym. Test. 43 (2015) 21–26.
DOI: 10.1016/j.polymertesting.2015.02.003
Google Scholar
[12]
S. Kawahara, O. Chaikumpollert, S. Sakurai, Y. Yamamoto, K. Akabori, Crosslinking junctions of vulcanized natural rubber analyzed by solid-state NMR spectroscopy equipped with field-gradient-magic angle spinning probe, Polymer. 50 (2009).
DOI: 10.1016/j.polymer.2009.01.062
Google Scholar
[13]
T. Saito, W. Klinklai, S. Kawahara, Characterization of epoxidized natural rubber by 2D NMR spectroscopy, Polymer. 48 (2007) 750–757.
DOI: 10.1016/j.polymer.2006.12.001
Google Scholar
[14]
J. Y. Buzaré, G. Silly, J. Emery, G. Boccaccio, E. Rouault, Aging effects on vulcanized natural rubber studied by high resolution solid state 13C-NMR, Eur. Polym. J. 37 (2001) 85–91.
DOI: 10.1016/s0014-3057(00)00081-1
Google Scholar