[1]
W. Rieger, I. S. Leyen, I. S. Kobel, W. Weber, The Use of Bioceramics in Dental and Medical Applications, Digit. Dent. News, 3 (2009) 6-12.
Google Scholar
[2]
T. R. Ramesh, M. Gangaiah, P. V. Harish, U. Krishnakumar, B. Nandakishore, Zirconia Ceramics as a Dental Biomaterial–An Over-view, Trends Biomater. Artif. Organs. 26 (2012) 154-160.
Google Scholar
[3]
C. Piconi, G. Maccauro, Zirconia as a ceramic biomaterial, Biomaterials. 20 (1999) 1-25.
DOI: 10.1016/s0142-9612(98)00010-6
Google Scholar
[4]
R. Izamshaha, M. A. Azamb, M. Hadzleya, M. Alib, M. S. Kasimb, M. S. Abdul Azizb, Study of Surface Roughness on Milling Unfilled-polyetheretherketones Engineering Plastics, Procedia Eng. 68 (2013) 654-660.
DOI: 10.1016/j.proeng.2013.12.235
Google Scholar
[5]
L. Heng, G. E. Yang, R. Wang, M. S. Kim, S. D. Mun, Effect of carbon nano tube (CNT) particles in magnetic abrasive finishing of Mg alloy bars, J. Mech. Sci. Technol. 29 (2015) 5325-5333.
DOI: 10.1007/s12206-015-1134-6
Google Scholar
[6]
N. Kumar, H. Tripathi, S. Gandotra, Optimization of Cylindrical Grinding Process Parameters on C40E Steel Using Taguchi Technique, Int. J. Eng. Res. Appl. 5 (2015) 100-104.
Google Scholar
[7]
B. Girma, S. S. Joshi, M. V. G. S. Raghuram, R. Balasubramaniam, An Experimental Analysis of Magnetic Abrasives Finishing of Plane Surfaces, Mach. Sci. Technol. 10 (2006) 323-340.
DOI: 10.1080/10910340600902140
Google Scholar
[8]
R. Singh, S. N. Melkote, Characterization of a Hybrid Laser-Assisted Mechanical Micromachining (LAMM) Process for A Difficult-to-Machine Material, Int. J. Mach. Tools Manufacture, 47 (2007) 1139-1150.
DOI: 10.1016/j.ijmachtools.2006.09.004
Google Scholar
[9]
S. Sun, M. Brandt, M. S. Dargusch, Thermally Enhanced Machining of Hard-to-Machine-Materials-A Review, Int. J. Mach. Tools Manufacture, 50 (2010) 663-680.
DOI: 10.1016/j.ijmachtools.2010.04.008
Google Scholar
[10]
H. Romanus, E. Ferraris, J. Bouquet, D. Reynaerts, B. Lauwers, Micromilling of Sintered ZrO2 Ceramic via Cbn and Diamond Coated Tools, Procedia CIRP, 14 (2014) 371-376.
DOI: 10.1016/j.procir.2014.03.063
Google Scholar
[11]
I. T. Im, S. D. Mun, S. M. oh, Micro Machining of an STS 304 Bar by Magnetic Abrasive Finishing, J. Mech. Sci. Technol. 23 (2009) 1982-(1988).
DOI: 10.1007/s12206-009-0524-z
Google Scholar
[12]
G. W. Chang, B. H. Yan, R. T. Hsu, Study on Cylindrical Magnetic Abrasive Finishing Using Unbonded Magnetic Abrasives, Int. J. Mach. Tools Manufacture, 42 (2002) 575-583.
DOI: 10.1016/s0890-6955(01)00153-5
Google Scholar
[13]
M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, Sci. 287 (2000) 637-640.
DOI: 10.1126/science.287.5453.637
Google Scholar
[14]
M. M . J . Treacy, T. W. Ebbesen, J. M. Gibson, Exceptionally High Young's Modulus Observed for Individual Carbon Nanotubes, Nature, 381 (1996) 678-680.
DOI: 10.1038/381678a0
Google Scholar
[15]
J. Kang, A. George, H. Yamaguchi, High-speed Internal Finishing of Capillary Tubes by Magnetic Abrasive Finishing, Procedia CIRP, 1 (2012) 414-418.
DOI: 10.1016/j.procir.2012.04.074
Google Scholar