[1]
M. M. Reddy, S. Vivekanandhan, M. Misra, S. K. Bhatia, A. K. Mohanty, Biobased plastics and bionanocomposites: Current status and future opportunitie, Prog. Polym. Sci. 38(10-11) (2013) 1653-1689.
DOI: 10.1016/j.progpolymsci.2013.05.006
Google Scholar
[2]
V. Peinado, L. García, Á. Fernández, P. Castell, Novel lightweight foamed poly (lactic acid) reinforced with different loadings of functionalized sepiolite. Compos. Sci. Technol. 101 (2014) 17-23.
DOI: 10.1016/j.compscitech.2014.06.025
Google Scholar
[3]
D. Gao, J. Wang, Y. Wang, P. Zhang, Effect of melt viscosity on the cell morphology and properties of poly (lactic Acid) foams, J. Cell. Plast. (2014), DOI: 10. 1177/0021955X14566210.
Google Scholar
[4]
K. Oksman, M. Skrifvars, J. F. Selin, Natural fibres as reinforcement in polylactic acid (PLA) composites, Compos. Sci. Technol. 63(9) (2003) 1317-1324.
DOI: 10.1016/s0266-3538(03)00103-9
Google Scholar
[5]
J. Goswami, N. Bhatnagar, S. Mohanty, A. K. Ghosh, Processing and characterization of poly (lactic acid) based bioactive composites for biomedical scaffold application, eXPRESS Polym. Lett. 7(7) (2013) 767-777.
DOI: 10.3144/expresspolymlett.2013.74
Google Scholar
[6]
Y. Dong, A. Ghataura, H. Takagi, H. J. Haroosh, A. N. Nakagaito, K. T. Lau, Polylactic acid (PLA) biocomposites reinforced with coir fibres: Evaluation of mechanical performance and multifunctional properties, Compos. Part. A- Appl. S. 63 (2014).
DOI: 10.1016/j.compositesa.2014.04.003
Google Scholar
[7]
R. Kumar, M. K. Yakubu, R. D. Anandjiwala, Biodegradation of flax fiber reinforced poly lactic acid, eXPRESS Polym. Lett. 4(7) (2010) 423-430.
DOI: 10.3144/expresspolymlett.2010.53
Google Scholar
[8]
N. Petchwattana, S. Covavisaruch, N. Euapanthasate, Mechanical and thermal behaviors of the acrylic based core-shell rubber modified poly (lactic acid), Adv. Mater. 306-307 (2011) 340-343.
DOI: 10.4028/www.scientific.net/amr.306-307.340
Google Scholar
[9]
F. Z. Arrakhiz, M. El Achaby, A. C. Kakou, S. Vaudreuil, K. Benmoussa, R. Bouhfida, O. Fassi-Fehri, A. Qaiss, Mechanical properties of high density polyethylene reinforced with chemically modified coir fibers: Impact of chemical treatments, Mater. Des. 37 (2012).
DOI: 10.1016/j.matdes.2012.01.020
Google Scholar
[10]
E. Petinakis, L. Yu, G. Simon, K. Dean, Natural fibre bio-composites incorporating poly (lactic Acid) fiber, Reinforced Polymers-The Technology Applied for Concrete Repair, 20 (2013) 41-60.
DOI: 10.5772/52253
Google Scholar
[11]
X. Y. Liu, G. C. Dai, Surface modification and micromechanical properties of jute fiber mat reinforced polypropylene composites, eXPRESS Polym. Lett. 1(5) (2007) 299–307.
DOI: 10.3144/expresspolymlett.2007.43
Google Scholar
[12]
C. W. Shan, M. I. Idris, M. I. Ghazali, Study of flexible polyurethane foams reinforced with coir fibres and tyre particles, Int. J. Appl. Phys. Math. 2(2) (2012) 123-130.
DOI: 10.7763/ijapm.2012.v2.67
Google Scholar
[13]
C. Diao, T. Dowding, S. Hemsri, R. S. Parnas, Toughened wheat gluten and treated coconut fiber composite, Compos. Part A-Appl. S. 58 (2014) 90-97.
DOI: 10.1016/j.compositesa.2013.12.005
Google Scholar
[14]
Md. R. Rahmana, Md. M. Huque, Md. N. Islam, M. Hasan, Mechanical properties of polypropylene composites reinforced with chemically treated abaca, Compos. Part A-Appl. S. 40(4) (2009) 511-517.
DOI: 10.1016/j.compositesa.2009.01.013
Google Scholar
[15]
A. I. S. Brígida. V. M. A. Calado, L. R. B. Gonçalves, M. A. Z. Coelho, Effect of chemical treatments on properties of green coconut fiber, Carbohyd. Polym. 79(4) (2010) 832-838.
DOI: 10.1016/j.carbpol.2009.10.005
Google Scholar
[16]
N. Petchwattana, S. Covavisaruch, Mechanical and morphological properties of wood plastic biocomposites prepared from toughened poly (lactic acid) and rubber wood sawdust (Hevea brasiliensis). J. Bionic. Eng. 11(4) (2014) 630-637.
DOI: 10.1016/s1672-6529(14)60074-3
Google Scholar
[17]
N. Petchwattana, S. Covavisaruch, N. Euapanthasate, Utilization of ultrafine acrylate rubber particles as a toughening agent for poly (lactic Acid), Mater. Sci. Eng. A. 532 (2012) 64-70.
DOI: 10.1016/j.msea.2011.10.063
Google Scholar
[18]
M. Nofar, C. B. Park, Poly (lactic acid) foaming, Prog. Polyme. Sci. 39(10) (2014) 1721–1741.
DOI: 10.1016/j.progpolymsci.2014.04.001
Google Scholar
[19]
E. deM. Teixeira, A. de Campos, J. M. Marconcini, T. J. Bondancia, D. Wood, A. Klamczynski, L. H. C. Mattosoa, G. M. Glenn, Starch/fiber/poly(lactic acid) foam and compressed foam composites, RSC Adv. 4(13) (2014) 6616-6623.
DOI: 10.1039/c3ra47395c
Google Scholar
[20]
J. Sahari, S. M. Sapuan, Natural fiber reinforced biodegradable polymer composites, Rev. Adv. Mater. Sci. 30 (2011) 166-174.
Google Scholar
[21]
Y. Luo, J. Zhang, R. Qi, J. Lu, X. Hu, P. Jiang, Polylactide foams prepared by a traditional chemical compression-molding method, J. Appl. Polym. Sci. 130 (2013) 330-337.
DOI: 10.1002/app.39023
Google Scholar
[22]
N. Bitinis, E. Fortunati, R. Verdejo, J. Bras, J. M. Kenny, L. Torre, M. A. López-Manchado, Poly (lactic Acid)/natural rubber/cellulose nanocrystal bionanocomposites part II: properties evaluation, Carbohyd. Polym. 96(2) (2013) 621-627.
DOI: 10.1016/j.carbpol.2013.03.091
Google Scholar
[23]
Å. Larse, C. Neldin, Physical extruder foaming of poly (lactic acid)—processing and foam properties, Polym. Eng. Sci. 53(5) (2013) 941-949.
DOI: 10.1002/pen.23341
Google Scholar
[24]
N. Bitinis, E. Fortunati, R. Verdejo, J. Bras, J. M. Kenny, L. Torre, M. A. López-Manchado, Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites part I: processing and morphology, Carbohyd. Polym. 96(2) (2013) 611-620.
DOI: 10.1016/j.carbpol.2013.02.068
Google Scholar