Mechanical and Thermal Properties of Toughened PLA Composite Foams with Modified Coconut Fiber

Article Preview

Abstract:

Composite foams from PLA, natural rubber and modified coconut fibers was prepared employing a compression molding method, which is suitable for the fabrication of composites containing high fiber content. The results revealed that the incorporation of natural rubber into composite foams increases the compressive stress to 101.17 kN/m2. Further, a 10% wt increase of modified coconut fiber added into composite foams resulted in an increase of compressive stress to 105.24 kN/m2. The addition of modified coconut fibers in composite foams showed a slight decrease of the crystallization state, obtained by DSC results by about 1-3 oC. Thus, modified coconut fibers played a role as a nucleating agent. Moreover, the combination of modified coconut fibers in composite foams could lead to improved adhesion between the surface area of PLA matrix and the natural rubber phase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

179-185

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. M. Reddy, S. Vivekanandhan, M. Misra, S. K. Bhatia, A. K. Mohanty, Biobased plastics and bionanocomposites: Current status and future opportunitie, Prog. Polym. Sci. 38(10-11) (2013) 1653-1689.

DOI: 10.1016/j.progpolymsci.2013.05.006

Google Scholar

[2] V. Peinado, L. García, Á. Fernández, P. Castell, Novel lightweight foamed poly (lactic acid) reinforced with different loadings of functionalized sepiolite. Compos. Sci. Technol. 101 (2014) 17-23.

DOI: 10.1016/j.compscitech.2014.06.025

Google Scholar

[3] D. Gao, J. Wang, Y. Wang, P. Zhang, Effect of melt viscosity on the cell morphology and properties of poly (lactic Acid) foams, J. Cell. Plast. (2014), DOI: 10. 1177/0021955X14566210.

Google Scholar

[4] K. Oksman, M. Skrifvars, J. F. Selin, Natural fibres as reinforcement in polylactic acid (PLA) composites, Compos. Sci. Technol. 63(9) (2003) 1317-1324.

DOI: 10.1016/s0266-3538(03)00103-9

Google Scholar

[5] J. Goswami, N. Bhatnagar, S. Mohanty, A. K. Ghosh, Processing and characterization of poly (lactic acid) based bioactive composites for biomedical scaffold application, eXPRESS Polym. Lett. 7(7) (2013) 767-777.

DOI: 10.3144/expresspolymlett.2013.74

Google Scholar

[6] Y. Dong, A. Ghataura, H. Takagi, H. J. Haroosh, A. N. Nakagaito, K. T. Lau, Polylactic acid (PLA) biocomposites reinforced with coir fibres: Evaluation of mechanical performance and multifunctional properties, Compos. Part. A- Appl. S. 63 (2014).

DOI: 10.1016/j.compositesa.2014.04.003

Google Scholar

[7] R. Kumar, M. K. Yakubu, R. D. Anandjiwala, Biodegradation of flax fiber reinforced poly lactic acid, eXPRESS Polym. Lett. 4(7) (2010) 423-430.

DOI: 10.3144/expresspolymlett.2010.53

Google Scholar

[8] N. Petchwattana, S. Covavisaruch, N. Euapanthasate, Mechanical and thermal behaviors of the acrylic based core-shell rubber modified poly (lactic acid), Adv. Mater. 306-307 (2011) 340-343.

DOI: 10.4028/www.scientific.net/amr.306-307.340

Google Scholar

[9] F. Z. Arrakhiz, M. El Achaby, A. C. Kakou, S. Vaudreuil, K. Benmoussa, R. Bouhfida, O. Fassi-Fehri, A. Qaiss, Mechanical properties of high density polyethylene reinforced with chemically modified coir fibers: Impact of chemical treatments, Mater. Des. 37 (2012).

DOI: 10.1016/j.matdes.2012.01.020

Google Scholar

[10] E. Petinakis, L. Yu, G. Simon, K. Dean, Natural fibre bio-composites incorporating poly (lactic Acid) fiber, Reinforced Polymers-The Technology Applied for Concrete Repair, 20 (2013) 41-60.

DOI: 10.5772/52253

Google Scholar

[11] X. Y. Liu, G. C. Dai, Surface modification and micromechanical properties of jute fiber mat reinforced polypropylene composites, eXPRESS Polym. Lett. 1(5) (2007) 299–307.

DOI: 10.3144/expresspolymlett.2007.43

Google Scholar

[12] C. W. Shan, M. I. Idris, M. I. Ghazali, Study of flexible polyurethane foams reinforced with coir fibres and tyre particles, Int. J. Appl. Phys. Math. 2(2) (2012) 123-130.

DOI: 10.7763/ijapm.2012.v2.67

Google Scholar

[13] C. Diao, T. Dowding, S. Hemsri, R. S. Parnas, Toughened wheat gluten and treated coconut fiber composite, Compos. Part A-Appl. S. 58 (2014) 90-97.

DOI: 10.1016/j.compositesa.2013.12.005

Google Scholar

[14] Md. R. Rahmana, Md. M. Huque, Md. N. Islam, M. Hasan, Mechanical properties of polypropylene composites reinforced with chemically treated abaca, Compos. Part A-Appl. S. 40(4) (2009) 511-517.

DOI: 10.1016/j.compositesa.2009.01.013

Google Scholar

[15] A. I. S. Brígida. V. M. A. Calado, L. R. B. Gonçalves, M. A. Z. Coelho, Effect of chemical treatments on properties of green coconut fiber, Carbohyd. Polym. 79(4) (2010) 832-838.

DOI: 10.1016/j.carbpol.2009.10.005

Google Scholar

[16] N. Petchwattana, S. Covavisaruch, Mechanical and morphological properties of wood plastic biocomposites prepared from toughened poly (lactic acid) and rubber wood sawdust (Hevea brasiliensis). J. Bionic. Eng. 11(4) (2014) 630-637.

DOI: 10.1016/s1672-6529(14)60074-3

Google Scholar

[17] N. Petchwattana, S. Covavisaruch, N. Euapanthasate, Utilization of ultrafine acrylate rubber particles as a toughening agent for poly (lactic Acid), Mater. Sci. Eng. A. 532 (2012) 64-70.

DOI: 10.1016/j.msea.2011.10.063

Google Scholar

[18] M. Nofar, C. B. Park, Poly (lactic acid) foaming, Prog. Polyme. Sci. 39(10) (2014) 1721–1741.

DOI: 10.1016/j.progpolymsci.2014.04.001

Google Scholar

[19] E. deM. Teixeira, A. de Campos, J. M. Marconcini, T. J. Bondancia, D. Wood, A. Klamczynski, L. H. C. Mattosoa, G. M. Glenn, Starch/fiber/poly(lactic acid) foam and compressed foam composites, RSC Adv. 4(13) (2014) 6616-6623.

DOI: 10.1039/c3ra47395c

Google Scholar

[20] J. Sahari, S. M. Sapuan, Natural fiber reinforced biodegradable polymer composites, Rev. Adv. Mater. Sci. 30 (2011) 166-174.

Google Scholar

[21] Y. Luo, J. Zhang, R. Qi, J. Lu, X. Hu, P. Jiang, Polylactide foams prepared by a traditional chemical compression-molding method, J. Appl. Polym. Sci. 130 (2013) 330-337.

DOI: 10.1002/app.39023

Google Scholar

[22] N. Bitinis, E. Fortunati, R. Verdejo, J. Bras, J. M. Kenny, L. Torre, M. A. López-Manchado, Poly (lactic Acid)/natural rubber/cellulose nanocrystal bionanocomposites part II: properties evaluation, Carbohyd. Polym. 96(2) (2013) 621-627.

DOI: 10.1016/j.carbpol.2013.03.091

Google Scholar

[23] Å. Larse, C. Neldin, Physical extruder foaming of poly (lactic acid)—processing and foam properties, Polym. Eng. Sci. 53(5) (2013) 941-949.

DOI: 10.1002/pen.23341

Google Scholar

[24] N. Bitinis, E. Fortunati, R. Verdejo, J. Bras, J. M. Kenny, L. Torre, M. A. López-Manchado, Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites part I: processing and morphology, Carbohyd. Polym. 96(2) (2013) 611-620.

DOI: 10.1016/j.carbpol.2013.02.068

Google Scholar