Influence of the Unit Cell Geometrical Parameter to the Mechanical Properties of Ti6Al4V Open-Porous Scaffolds Manufactured by Selective Laser Melting

Article Preview

Abstract:

Selective laser melting (SLM) are getting more and more established as reliable methods for producing open-porous scaffolds with accurately controlled pore size, strut size, and porosity. However, the optimal geometrical parameter of the unit cell by SLM remained unclear. In this study, we evaluated the effect of unit geometrical parameters to the mechanical properties of porous scaffolds by finite element analysis method and Mechanical testing method. Six rhombic dodecahedron unit cells were designed with different geometrical parameter and the scaffolds manufactured by SLM using Ti6Al4V. The compression testing results show that the specimens with the same pore size, the elastic modulus and the strength are increased with increasing strut size and the specimens with the same strut size, the elastic modulus and the strength are decreased with increasing strut size. The porosity can be calculated by pore size and strut size. The compression strength of the porous scaffolds is 114MPa~258MPa and the quasi-elastic gradient is 3.18Gpa~8.64Gpa, which are similar to human bone. The simulation values are different from the experiment values but the variation tendency is in accordance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

201-210

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. C. Head, D. J. Bauk, R. H. Emerson Jr., Titanium as the material of choice for cementless femoral components in total hip arthroplasty, Clin. Orthop. Relat. Res. 311 (1995) 85-90.

Google Scholar

[2] M. Bahraminasab, B. B. Sahari, K. L. Edwards, F. Frahmand, M. Arumugam, Aseptic loosening of femoral components - materials engineering and design considerations, Mater. Des. 44 (2013) 155-163.

DOI: 10.1016/j.matdes.2012.07.066

Google Scholar

[3] S. Tigges, R. G. Stiles, J. R. Roberson, Complications of hip-arthroplasty causing periprosthetic radiolucency on plain radiographs, Am. J. Roentgenol. 162(6) (1994) 1387-1391.

DOI: 10.2214/ajr.162.6.8192005

Google Scholar

[4] S. A. Hacking, J. D. Bobyn, M. Tanzer, J. J. Krygier, Clin. Orthop. Relat. Res. (1999) 240-253.

Google Scholar

[5] K. A. Zweymuller, F. K. Lintner, M. F. Semlitsch, Biologic fixation of a press-fit titanium hip joint endoprosthesis, Clin. Orthop. Relat. Res. 235 (1988) 195-206.

DOI: 10.1097/00003086-198810000-00019

Google Scholar

[6] V. S. Deshpande, N. A. Fleck, M. F. Ashby, Effective properties of the octet-truss lattice material, J. Mech. Phys. solids, 49(8) (2001) 1747-1769.

DOI: 10.1016/s0022-5096(01)00010-2

Google Scholar

[7] S. Gu, T. J. Lu, A. J. Evans, On the design of 2D cellular metals for combined heat dissipation and structural load capacity, Int. J. Heat Mass Tranf. 44(11) (2001) 2163-2175.

DOI: 10.1016/s0017-9310(00)00234-9

Google Scholar

[8] V. S. Deshpande, N. A. Fleck, M. F. Ashby, Foam topology bending versus stretching dominated architecture, Acta. Mater. 49(6) (2001) 1035-1040.

DOI: 10.1016/s1359-6454(00)00379-7

Google Scholar

[9] K. P. Dharmasena, H. N. G. Wadley, Z. Y. Xue, et al. Mechanical response of metallic honeycomb sandwich panals to high intensity dynamic loading, Int. J. Impact Eng. 35(9) (2008) 1063-1074.

DOI: 10.1016/j.ijimpeng.2007.06.008

Google Scholar

[10] J. P. Li, S. H. Li, K. De Groot, P. Layrolle, Preparation and characterization of porous titanium, Key Eng. Mater. 218 (2002) 51-54.

DOI: 10.4028/www.scientific.net/kem.218-220.51

Google Scholar

[11] G. Campoli, M. S. Borleffs, S. Amin Yavari, R. Wauthle, H. Weinans, A. A. Zadpoor, Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing, Mater. Des. 49 (2013) 957-965.

DOI: 10.1016/j.matdes.2013.01.071

Google Scholar

[12] S. M. Ahmadi, G. Campoli, S. Amin Yavari, B. Sajadi, R. Wauthle, J. Schrooten, et al. Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells, J. Mech. Behav. Biomed. Mater. 34C (2014) 106-115.

DOI: 10.1016/j.jmbbm.2014.02.003

Google Scholar

[13] P. Heinl, L. Müller, C. Körner, R. F. Singer, F. A. Müller, Cellular Ti–6Al–4 V structures with interconnected macro porosity, Acta. Biomater. 4(5) (2008) 1536-1544.

DOI: 10.1016/j.actbio.2008.03.013

Google Scholar

[14] L. J. Gibson, M. F. Ashby, Cellular Solids: Structure and Properties, Cambridge: Cambridge University Press, (1997).

Google Scholar

[15] G. Campoli, M. S. Borleffs, S. Amin Yavari, R. Wauthle, H. Weinans, A. A. Zadpoor, Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing, Mater. Des. 49 (2013) 957-965.

DOI: 10.1016/j.matdes.2013.01.071

Google Scholar

[16] E. Sallica-Leva, A. L. Jardini, J. B. Fogagnolo, Microstructure and mechanical behavior of porous Ti-6Al-4 V parts obtained by selective laser melting, J. Mech. Behav. Biomed. Mater. 26 (2013) 98-108.

DOI: 10.1016/j.jmbbm.2013.05.011

Google Scholar

[17] B. Vrancken, L. Thijs, J. -P. Kruth, J. Van Humbeeck, Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties, J. Alloys Compd. 541(15) (2012) 177-185.

DOI: 10.1016/j.jallcom.2012.07.022

Google Scholar

[18] S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H. A. Richard, et al., On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance, Int. J. Fatigue 48 (2013).

DOI: 10.1016/j.ijfatigue.2012.11.011

Google Scholar

[19] R. Wauthle, B. Vrancken, B. Beynaerts, K. Jorissen, J. Schrooten, J. -P. Kruth, et al., Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures, Addit. Manuf. 5 (2015).

DOI: 10.1016/j.addma.2014.12.008

Google Scholar

[20] L. S. Xie, K. C. Chan, The effect of strut geometry on the yielding behavior of open -cell foams, Int. J. Mech. Sci. 48 (2006) 249-255.

DOI: 10.1016/j.ijmecsci.2005.10.003

Google Scholar