[1]
R. Robby, A. Nurrokhim, N. Suwarno, S. Nurkhamidah, Biogas production from a cassava starch waste water using an 3000 Liter aerobic reactor, J. Teknik Pomits, 2(1) (2013) 1–5.
Google Scholar
[2]
M.S. Akhirulawati, dan S. Awal, Treatment of the cassava starch waste water using aerob micro organism in Simba village, research report, Diponegoro University, Semarang, Indonesia, (2005).
Google Scholar
[3]
I. Fatimah, K. Wijaya, Sintesis tio 2 /zeolit as photocatalist at a cassava starch waste water using adsorption- photodegradation, 10(4) (2005) 257–267.
Google Scholar
[4]
S. Kagaya, K. Shimizu, R. Arai, K. Hasegawa, Separation of titanium dioxide photocatalyst in its aqueous suspension by coagulation with basic allumunium chlorida, Water Res. 37(7) (1999) 1753-1755.
DOI: 10.1016/s0043-1354(99)00004-4
Google Scholar
[5]
E. F. Pidgeon, The Application of Crossflow Membrane Filtration Technology to Remediate Wheat Starch Processing Wastewater for Reuse. School of Engineering, Science, Environmental and Technology, Griffith University, (2008).
Google Scholar
[6]
Budiyono, T. D. Kusworo, Biogas Production From Cassava Starch Effluent Using Microalgae As Biostabilisator. Int. J. Sci. Eng. 2(1) (2011) 4–8.
Google Scholar
[7]
N. D. Tzoupanos, A. I. Zouboulis, Coagulation-Flocculation Processes in Water / Wastewater Treatment : The Application of New Generations of Chemical Reagents, (2008) 309–317.
Google Scholar
[8]
N. B. Prakash, V. Sockan, P. Jayakaran, Waste Water Treatment by Coagulation and Flocculation, 3(2) (2014) 479–484.
Google Scholar
[9]
E. Butler, Y. Hung, R. Y. Yeh, M. Suleiman, A. Ahmad, Electrocoagulation in Wastewater Treatment (2011) 495–525. http: /doi. org/10. 3390/w3020495.
DOI: 10.3390/w3020495
Google Scholar
[10]
M. Y. A. Mollah, R. Schennach, J. R. Parga, D. L. Cocke, Electrocoagulation (EC) — science and applications, 84(1) (2001) 29–41.
DOI: 10.1016/s0304-3894(01)00176-5
Google Scholar
[11]
E. Gatsios, J. N. Hahladakis, E. Gidarakos, Optimization of electrocoagulation (EC) process for the puri fi cation of a real industrial wastewater from toxic metals, J. Environ. Manag. 154(1) (2015).
DOI: 10.1016/j.jenvman.2015.02.018
Google Scholar
[12]
J. L. Rosa, Robin, A. AIcon, M. B. Silva, C. A. Baldan, M. P. Peres, Electrodeposition of copper on titanium wires : Taguchi experimental design approach, J. Mater. Process. Technol. 209(3) (2009) 1181-1188.
DOI: 10.1016/j.jmatprotec.2008.03.021
Google Scholar
[13]
H. J. Mansoorian, A. H. Mahvi, A. J. Jafari, Removal of lead and zinc from battery industry wastewater using electrocoagulation process: Influence of direct and alternating current by using iron and stainless steel rod electrodes, Sep. Purif. Technol. 135(15) (2014).
DOI: 10.1016/j.seppur.2014.08.012
Google Scholar
[14]
X. M. Chen, G. I. I. Chen, P. L. Yue, Separation of pollutant from restaurant wastewater by electrocoagulation, Sep. purif. Technol. 19(1-2) (2000) 65-76.
Google Scholar
[15]
N. Mameri, I. Lounici, D. Belhocine, I. Grib, D. L. Piron, Y. Yalhiat, Defluoridation of sahara water by small plant electrocoagulation using bipolar alumunium electrodes, Sep. Purif. Technol. 24(1) (1998) 113-119.
DOI: 10.1016/s1383-5866(00)00218-5
Google Scholar
[16]
O. P. Sahu, P. K. Chaudhari, Review on chemical treatment of industrial waste water. J. Appl. Sci. Environ. Manag. 17(2) (2013) 241-257.
Google Scholar