[1]
R. W. L. Ip, H. C. W. Lau, F. T. S. Chan, An economical sculptured surface machining approach using fuzzy models and ball-nosed cutters. J. Mater. Process. Technol. 138 (2003) 579–585.
DOI: 10.1016/s0924-0136(03)00149-3
Google Scholar
[2]
T. S. Lan, K. S. Hsu, he implementation of optimum MRR on digital PC-based lathe system. Int. J. Adv. Manuf. Technol. 35 (2007) 248–254.
DOI: 10.1007/s00170-006-0729-6
Google Scholar
[3]
J. Chen, Y. Huang, M. Chen, Feedrate optimization and tool profile modification for the high-efficiency ball-end milling process, Int. J. Mach. Tools. Manuf. 45 (2005) 1070–1076.
DOI: 10.1016/j.ijmachtools.2004.11.020
Google Scholar
[4]
J. Kloypayan, Y. S. Lee. Adaptive federate scheduling and material engagement analysis for high performance machining. Proceedings of ASME international mechanical engineering congress & exposition, New Orleans, Louisiana, USA, (2002).
DOI: 10.1115/imece2002-33615
Google Scholar
[5]
B. U. Guzel, I. Lazoglu, Increasing productivity in sculpture surface machining via off-line piecewise variable feedrate scheduling based on the force system model, Int. J. Mach. Tools. Manuf. 44 (2004) 21–28.
DOI: 10.1016/j.ijmachtools.2003.08.014
Google Scholar
[6]
L. Q. Zhang, J. C. Feng, Y. H. Wang, M. Chen, Feedrate scheduling strategy for free-form surface machining through an integrated geometric and mechanistic model, Int. J. Adv. Manuf. Technol. 40 (2009) 1191–1201.
DOI: 10.1007/s00170-008-1424-6
Google Scholar
[7]
H. Erdim, I. Lazoglu, B. Ozturk, Feedrate scheduling strategies for free-form surfaces, Int. J. Mach. Tools. Manuf. 46 (2006) 747–757.
DOI: 10.1016/j.ijmachtools.2005.07.036
Google Scholar
[8]
Y. Liang, J. Ren, D. Zhang, X. Li, J. Zhou, Mechanics-based feedrate scheduling for multi-axis plunge milling. Int. J. Adv. Manuf. Technol. 79 (2015) 123-133.
DOI: 10.1007/s00170-015-6807-x
Google Scholar
[9]
G. Kiswanto, H. Hendriko, E. Duc, A hybrid analytical and discrete based methodology for determining cutter workpiece engagement in five axis milling. Int. J. adv. Manuf. Technol. 80 (2015) 2083-(2096).
DOI: 10.1007/s00170-015-7156-5
Google Scholar
[10]
H. Hendriko, Mathematical model for chip geometry calculation in five-axis milling. J. Technol. 77(23) (2015) 107-112.
DOI: 10.11113/jt.v77.6701
Google Scholar
[11]
G. Kiswanto, H. Hendriko, E. Duc, An analytical method for obtaining cutter workpiece engagement during a semi-finish in five-axis milling. Comput. Aided Des. 55 (2014) 81-93.
DOI: 10.1016/j.cad.2014.05.003
Google Scholar
[12]
K. Weinert, S. Du, P. Damm, M. Stautner, Swept volume generation for the simulation of machining processes, Int. J. Mach. Tool. Manuf. 44 (2004) 617-628.
DOI: 10.1016/j.ijmachtools.2003.12.003
Google Scholar
[13]
S. Du, T. Surmann, O. Webber, K. Weinert, Formulationg swept profile for five-axis tool motions, Int. J. Mach. Tool. Manuf. 45 (2005) 849-861.
DOI: 10.1016/j.ijmachtools.2004.11.006
Google Scholar
[14]
Y. Altintas, Manufacturing Automation: Metal Cutting mechanics, Machine Tool Vibrations, and CNC Design. Cambridge University Press (2000).
DOI: 10.1017/cbo9780511843723
Google Scholar