Piezoelectric Energy Harvester Adjusted by Light-Induced Actuator

Article Preview

Abstract:

Shape-memory polymer has two different effects, i.e. shape memory effect and variable stiffness effect. Significant Young’s modulus changes when an external stimulus is applied. Light-induced shape memory polymer exhibits great potential in application of actuators because of its reconfigurableness, adaptiveness and non-contact control. In this paper, a smart actuator based on light-induced shape memory polymer is applied to improve the output power of piezoelectric energy harvester. This energy harvester is a laminated beam structure which includes five layers. Two piezoelectric layers are attached on the upper and lower surfaces of substrate layer. Then two light-induced actuators are bonded on the piezoelectric layers to adjust the frequency of this laminated beam via variable stiffness effect. Output power of the energy harvester could be promoted after the light-induced actuation since the natural frequency approaching the excitation frequency.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

526-531

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Lendlein, R. Langer, Biodegradable, elastic shape-memory polymers for potential biomedical applications, Sci. 296(5573) (2002) 1673-1676.

DOI: 10.1126/science.1066102

Google Scholar

[2] H. Tobushi, H. Hara, E. Yamada, et al, Thermomechanical properties in a thin film of shape memory polymer of polyurethane series, Smart. Struct. Mater. 5(4) (1996) 483, doi: 10. 1117/12. 232168.

DOI: 10.1088/0964-1726/5/4/012

Google Scholar

[3] K. M. Lee, H. Koerner, R. A. Vaia, et al, Light-activated shape memory of glassy, azobenzene liquid crystalline polymer networks, Soft Matter. 7(9) (2011) 4318-4324.

DOI: 10.1039/c1sm00004g

Google Scholar

[4] E. Havens, E. A. Snyder, T. H. Tong, Light-activated shape memory polymers and associated applications, Int. Soc. Opt. Photon. 5762 (2005) 48-55.

Google Scholar

[5] J. Jagur-Grodzinski, Polymeric gels and hydrogels for biomedical and pharmaceutical applications, Polym. Adv. Tech. 21(1) (2010) 27-47.

DOI: 10.1002/pat.1504

Google Scholar

[6] A. M. Schmidt, Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles, Macromol. Rapid. Comm. 27(14) (2006) 1168-1172.

DOI: 10.1002/marc.200600225

Google Scholar

[7] S. Conti, M. Lenz, M. Rumpf, Modeling and simulation of magnetic-shape-memory polymer composites, J. Mech. Phys. Solids. 55(7) (2007) 1462-1486.

DOI: 10.1016/j.jmps.2006.12.008

Google Scholar

[8] M. Y. Razzaq, M. Anhalt, L. Frormann, B. Weidenfeller, Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers, Mater. Sci. Eng. A. 444(1) (2007) 227-235.

DOI: 10.1016/j.msea.2006.08.083

Google Scholar

[9] J. W. Cho, J. W. Kim, Y. C. Jung, N. S. Goo, Electroactive shape-memory polyurethane composites incorporating carbon nanotubes, Macromol. Rapid. Comm. 26(5) (2005) 412-416.

DOI: 10.1002/marc.200400492

Google Scholar

[10] M. C. Serrano, G. A. Ameer, Recent Insights Into the Biomedical Applications of Shape-memory Polymers, Macromol. Biosci. 12(9) (2005) 1156-1171.

DOI: 10.1002/mabi.201200097

Google Scholar

[11] W. Sokolowski, A. Metcalfe, S. Hayashi, L. H. Yahia, J. Raymond, Medical applications of shape memory polymers, Biomed. Mater. 2(1) (2007) 23-27.

DOI: 10.1088/1748-6041/2/1/s04

Google Scholar

[12] G. Baer, T. Wilson, D. Matthews, D. Maitland, Shape-memory behavior of thermally stimulated polyurethane for medical applications, J. Appl. Polym. Sci. 103(6) (2007) 3882-3892.

DOI: 10.1002/app.25567

Google Scholar

[13] A. Lendlein, H. Jiang, O. Jünger, R. Langer, Light-induced shape-memory polymers, Nature, 434(7035) (2005) 879-882.

DOI: 10.1038/nature03496

Google Scholar

[14] S. P. Beeby, R. N. Torah, M. J. Tudor, et al, A micro electromagnetic generator for vibration energy harvesting, J. Micromech. Mic. Eng. 17(7) (2007) 1257-1265.

DOI: 10.1088/0960-1317/17/7/007

Google Scholar

[15] H. B. Fang, J. Q. Liu, Z. Y. Xu, et al, Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting, Microelectron. J. 37(11) (2006) 1280-1284.

DOI: 10.1016/j.mejo.2006.07.023

Google Scholar

[16] C. Eichhorn, F. Goldschmidtboeing, P. Woias, Bidirectional frequency tuning of a piezoelectric energy converter based on a cantilever beam, J. Micromech. Microeng. 19(9) (2009) 094006-1-6.

DOI: 10.1088/0960-1317/19/9/094006

Google Scholar

[17] X. Zhang, Q. Zhou, H. Liu, et al. UV light induced plasticization and light activated shape memory of spiropyran doped ethylene-vinyl acetate copolymers, Soft Matter. 10 (2014) 3748-3754.

DOI: 10.1039/c4sm00218k

Google Scholar