[1]
A. Lendlein, R. Langer, Biodegradable, elastic shape-memory polymers for potential biomedical applications, Sci. 296(5573) (2002) 1673-1676.
DOI: 10.1126/science.1066102
Google Scholar
[2]
H. Tobushi, H. Hara, E. Yamada, et al, Thermomechanical properties in a thin film of shape memory polymer of polyurethane series, Smart. Struct. Mater. 5(4) (1996) 483, doi: 10. 1117/12. 232168.
DOI: 10.1088/0964-1726/5/4/012
Google Scholar
[3]
K. M. Lee, H. Koerner, R. A. Vaia, et al, Light-activated shape memory of glassy, azobenzene liquid crystalline polymer networks, Soft Matter. 7(9) (2011) 4318-4324.
DOI: 10.1039/c1sm00004g
Google Scholar
[4]
E. Havens, E. A. Snyder, T. H. Tong, Light-activated shape memory polymers and associated applications, Int. Soc. Opt. Photon. 5762 (2005) 48-55.
Google Scholar
[5]
J. Jagur-Grodzinski, Polymeric gels and hydrogels for biomedical and pharmaceutical applications, Polym. Adv. Tech. 21(1) (2010) 27-47.
DOI: 10.1002/pat.1504
Google Scholar
[6]
A. M. Schmidt, Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles, Macromol. Rapid. Comm. 27(14) (2006) 1168-1172.
DOI: 10.1002/marc.200600225
Google Scholar
[7]
S. Conti, M. Lenz, M. Rumpf, Modeling and simulation of magnetic-shape-memory polymer composites, J. Mech. Phys. Solids. 55(7) (2007) 1462-1486.
DOI: 10.1016/j.jmps.2006.12.008
Google Scholar
[8]
M. Y. Razzaq, M. Anhalt, L. Frormann, B. Weidenfeller, Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers, Mater. Sci. Eng. A. 444(1) (2007) 227-235.
DOI: 10.1016/j.msea.2006.08.083
Google Scholar
[9]
J. W. Cho, J. W. Kim, Y. C. Jung, N. S. Goo, Electroactive shape-memory polyurethane composites incorporating carbon nanotubes, Macromol. Rapid. Comm. 26(5) (2005) 412-416.
DOI: 10.1002/marc.200400492
Google Scholar
[10]
M. C. Serrano, G. A. Ameer, Recent Insights Into the Biomedical Applications of Shape-memory Polymers, Macromol. Biosci. 12(9) (2005) 1156-1171.
DOI: 10.1002/mabi.201200097
Google Scholar
[11]
W. Sokolowski, A. Metcalfe, S. Hayashi, L. H. Yahia, J. Raymond, Medical applications of shape memory polymers, Biomed. Mater. 2(1) (2007) 23-27.
DOI: 10.1088/1748-6041/2/1/s04
Google Scholar
[12]
G. Baer, T. Wilson, D. Matthews, D. Maitland, Shape-memory behavior of thermally stimulated polyurethane for medical applications, J. Appl. Polym. Sci. 103(6) (2007) 3882-3892.
DOI: 10.1002/app.25567
Google Scholar
[13]
A. Lendlein, H. Jiang, O. Jünger, R. Langer, Light-induced shape-memory polymers, Nature, 434(7035) (2005) 879-882.
DOI: 10.1038/nature03496
Google Scholar
[14]
S. P. Beeby, R. N. Torah, M. J. Tudor, et al, A micro electromagnetic generator for vibration energy harvesting, J. Micromech. Mic. Eng. 17(7) (2007) 1257-1265.
DOI: 10.1088/0960-1317/17/7/007
Google Scholar
[15]
H. B. Fang, J. Q. Liu, Z. Y. Xu, et al, Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting, Microelectron. J. 37(11) (2006) 1280-1284.
DOI: 10.1016/j.mejo.2006.07.023
Google Scholar
[16]
C. Eichhorn, F. Goldschmidtboeing, P. Woias, Bidirectional frequency tuning of a piezoelectric energy converter based on a cantilever beam, J. Micromech. Microeng. 19(9) (2009) 094006-1-6.
DOI: 10.1088/0960-1317/19/9/094006
Google Scholar
[17]
X. Zhang, Q. Zhou, H. Liu, et al. UV light induced plasticization and light activated shape memory of spiropyran doped ethylene-vinyl acetate copolymers, Soft Matter. 10 (2014) 3748-3754.
DOI: 10.1039/c4sm00218k
Google Scholar