[1]
I. N. Bastos, S. S. Tavares, F. Dalard, R. P. Nogueira, Effect of microstructure on corrosion behavior of superduplex stainless steel at critical environment conditions, Scr. Mater. 57(10) (2007) 913-916.
DOI: 10.1016/j.scriptamat.2007.07.037
Google Scholar
[2]
R. Badji, M. Bouabdallah, B. Bacroix, Phase transformation and mechanical behavior in annealed 2205 duplex stainless steel welds, Mater. Charact. 59(4) (2008) 447-453.
DOI: 10.1016/j.matchar.2007.03.004
Google Scholar
[3]
T. H. Chen, K. L. Weng, J. R. Yang, The effect of high-temperature exposure on the microstructural stability and toughness property in a 2205 duplex stainless steel, Mater. Sci. Eng. A 338(1-2) (2002) 259-270.
DOI: 10.1016/s0921-5093(02)00093-x
Google Scholar
[4]
J. A. Jimenez, M. Carsi, O. A. Ruano, Characterization of a δ/γ duplex stainless steel, J. Mater. Sci. 35(4) (2000) 907-915.
Google Scholar
[5]
H. Sieurin, R. Sandstrom, E. M. Westin, Fracture toughness of the lean duplex stainless steel LDX 2101, Metall. Mater. Trans. A, 37A (2006), 2975-2981.
DOI: 10.1007/s11661-006-0179-7
Google Scholar
[6]
E. Evangelista, H. J. McQueen, M. Niewczas, M. Cabibbo, Hot workability of 2304 and 2205 duplex stainless steels, Can. Metall. Quart. 43(3) (2004) 339-353.
DOI: 10.1179/cmq.2004.43.3.339
Google Scholar
[7]
P. Cizek, B. P. Wynne, A mechanism of ferrite softening in a duplex stainless steel deformed in hot torsion, Mater. Sci. Eng. A 230(1-2) (1997) 88-94.
DOI: 10.1016/s0921-5093(97)00087-7
Google Scholar
[8]
Z. Wei, J. Laizhu, H. Jincheng, S. Hongmei, Effect of ageing on precipitation and impact energy of 2101 economical duplex stainless steel, Mater. Charact. 60(1) (2009) 50-55.
DOI: 10.1016/j.matchar.2008.07.002
Google Scholar
[9]
L. Zhang, W. Zhang, Y. Jiang, B. Deng, D. Sun, J. Li, Influence of annealing treatment on the corrosion resistance of lean duplex stainless steel 2101, Electrochimica. Acta. 54(23) (2009) 5387-5392.
DOI: 10.1016/j.electacta.2009.04.023
Google Scholar
[10]
L. Zhang, Y. Jiang, B. Deng, W. Zhang, J. Xu, J. Li, Effect of aging on the corrosion resistance of 2101 lean duplex stainless steel, Mater. Charact. 60(12) (2009) 1522-1528.
DOI: 10.1016/j.matchar.2009.08.009
Google Scholar
[11]
Y. L. Fang, Z. Y. Liu, H. M. Song, L. Z. Jiang, Hot deformation behavior of a new austenite–ferrite duplex stainless steel containing high content of nitrogen, Mater. Sci. Eng. A 526 (1-2) (2009) 128-133.
DOI: 10.1016/j.msea.2009.07.012
Google Scholar
[12]
Y. Han, G. Qiao, Y. Sun, Modeling the constitutive relationship of Cr 20 Ni 25 Mo 4 Cu superaustenitic stainless steel during elevated temperature, Mater. Sci. Eng. A 539 (2012), 61-67.
DOI: 10.1016/j.msea.2012.01.036
Google Scholar
[13]
C. M. Sellars, W. J. McG. Tegart, Strength and structure under hot-working conditions, Int. Met. Rev. 14(14) (1969) 1-24.
DOI: 10.1179/095066069790138056
Google Scholar
[14]
I. P. Pinheiro, R. Barbosa, P. R. Cetlin, The relevance of dynamic recrystallization in the hot deformation of IF steel at high strain rates, Mater. Sci. Eng. A 457(1-2) (2007) 90-93.
DOI: 10.1016/j.msea.2006.12.003
Google Scholar
[15]
D. N. Zou, K. Wu, Y. Han, W. Zhang, B. Cheng, G. J. Qiao, Deformation characteristic and prediction of flow stress for as-cast 21Cr economical duplex stainless steel under hot compression, Mater. Des. 51 (2013) 975-982.
DOI: 10.1016/j.matdes.2013.04.065
Google Scholar