[1]
Yong Huang, et al., Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations, Journal of Manufacturing Science and Engineering. 137. 1 (2015) 014001.
DOI: 10.1115/1.4028725
Google Scholar
[2]
CK Chua, KF Leong, Lim, Rapid Prototyping: Principles and Applications. Singapore. World Scientific Publishing Co. Pte. Ltd, (2003).
Google Scholar
[3]
Anoop Kumar Sood, Study on Parametric Optimization of Fused Deposition Modelling (FDM) Process. Diss. NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA. (2011).
Google Scholar
[4]
D. Frank, G. Fadel, Expert system based selection of the preferred direction of build for rapid prototyping, J. Intell. Manuf. 6 (1994) 334–339.
DOI: 10.1007/bf00124677
Google Scholar
[5]
P. Alexander, S. Allen, D. Dutta, Part orientation and build cost determination in layered manufacturing, Comput. Aided Des. 30 (5) (1998) 343–356.
DOI: 10.1016/s0010-4485(97)00083-3
Google Scholar
[6]
MK Agarwala, VR Jamalabad, NA Langrana, A Safari, PJ Whalen, SC Danforth, Structural quality of parts processed by fused deposition. Rapid Prototyping Journal. (1996) pp.4-19.
DOI: 10.1108/13552549610732034
Google Scholar
[7]
AK Sood, RK Ohdar, SS Mahapatra, Parametric appraisal of fused deposition modeling process using the grey Taguchi method. Proceedings of the Institution of Mechanical Engineers, Part B: J. Engineering Manufacture. (2009) pp.135-145.
DOI: 10.1243/09544054jem1565
Google Scholar
[8]
Dae Keon Ahn, Ho Chan Kim, and Seok Hee Lee, Determination of fabrication direction to minimize post-machining in FDM by prediction of non-linear roughness characteristics, Journal of mechanical science and technology. 19. 1 (2005): 144-155.
DOI: 10.1007/bf02916113
Google Scholar
[9]
Panda, B.N., Bahubalendruni, M.R. and Biswal, B.B., 2015. A general regression neural network approach for the evaluation of compressive strength of FDM prototypes. Neural Computing and Applications, 26(5), pp.1129-1136.
DOI: 10.1007/s00521-014-1788-5
Google Scholar
[10]
K. Thrimurthulu, Pulak M. Pandey, N. Venkata Reddy, Optimum part deposition orientation in fused deposition modeling, International Journal of Machine Tools and Manufacture. 44. 6 (2004): 585-594.
DOI: 10.1016/j.ijmachtools.2003.12.004
Google Scholar
[11]
P. M. Pandey , K. Thrimurthulu, N. Venkata Reddy Optimal part deposition orientation in FDM by using a multicriteria genetic algorithm, International Journal of Production Research. 42: 19 (2004) , 4069-4089, DOI: 10. 1080/00207540410001708470.
DOI: 10.1080/00207540410001708470
Google Scholar
[12]
P. M. Pandey, N. Venkata Reddy, S. G. Dhande, Part deposition orientation studies in layer manufacturing, Journal of materials processing technology. 185. 1 (2007): 125-131.
DOI: 10.1016/j.jmatprotec.2006.03.120
Google Scholar
[13]
SC Park, Hollowing Objects with Uniform Wall Thickness, Computer-Aided Design. 37: 45 (2005) 1–460.
DOI: 10.1016/j.cad.2004.08.001
Google Scholar
[14]
L. M. Galantucci, F. Lavecchia, G. Percoco, Experimental study aiming to enhance the surface finish of fused deposition modeled parts, CIRP Annals-Manufacturing Technology. 58. 1 (2009): 189-192.
DOI: 10.1016/j.cirp.2009.03.071
Google Scholar
[15]
Lorna J. Gibson, Michael F. Ashby, Cellular solids: structure and properties. Cambridge university press, (1999).
Google Scholar
[16]
M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, Metal Foams: A Design Guide, Butterworth-Heinemann, Boston, MI, (2000).
Google Scholar
[17]
Panda, B.N., Bahubalendruni, M.R. Biswal, B.B. and Marco L., 2016. A CAD-based approach for measuring volumetric error in layered manufacturing. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0954406216634746. DOI: 10. 1177/0954406216634746.
DOI: 10.1177/0954406216634746
Google Scholar
[18]
V.S. Deshpande, N.A. Fleck, M.F. Ashby, Effective properties of the octet-truss lattice material, Journal of the Mechanics and Physics of Solids, (2001) Vol. No. 8, pp.1747-1769.
DOI: 10.1016/s0022-5096(01)00010-2
Google Scholar
[19]
Li Yang, Experimental-assisted design development for an octahedral cellular structure using additive manufacturing, Rapid Prototyping Journal, (2015) Vol. 21 Iss 2 p.168 – 176.
DOI: 10.1108/rpj-12-2014-0178
Google Scholar
[20]
D.W. Rosen, Design for additive manufacturing: a method to explore unexplored regions of the design space, Proceedings of the 17th International Solid Freeform Fabrication (SFF) Symposium, University of Austin, Austin, TX, (2007).
Google Scholar
[21]
L. Villalpando, H. Eiliat, R. J. Urbanic, An optimization approach for components built by fused deposition modeling with parametric internal structures, Procedia CIRP 17 (2014): 800-805.
DOI: 10.1016/j.procir.2014.02.050
Google Scholar
[22]
Biranchi Narayan Panda, Design and Development of Cellular Structure for Additive manufacturing, Diss. NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA, (2011).
Google Scholar
[23]
Qu Xiuzhi Brent Stucker, A 3D surface offset method for STL-format models, Rapid Prototyping Journal, (2003) Vol. 9 Iss 3pp. 133 – 141.
DOI: 10.1108/13552540310477436
Google Scholar
[24]
B Koc, Y. S. Lee, Non-uniform offsetting and hollowing objects by using biarcs fitting for rapid prototyping processes, Computers in Industry, 47(1), (2002) , 1-23.
DOI: 10.1016/s0166-3615(01)00141-5
Google Scholar
[25]
S Jin, R. R. Lewis, D. West, A comparison of algorithms for vertex normal computation, The Visual Computer, 21(1-2), (2005), 71-82.
DOI: 10.1007/s00371-004-0271-1
Google Scholar
[26]
G Thürmer, C. A. Wüthrich, Computing vertex normals from polygonal facets, Journal of Graphics Tools, 3(1), (1998), 43-46.
DOI: 10.1201/b10628-11
Google Scholar
[27]
STL file format, http: /www. 3dsystems. com, 3D Systems.
Google Scholar