Numerical Investigation of Modified Bach Type Vertical Axis Wind Turbine

Article Preview

Abstract:

This study evaluates the performance and flow behaviour over the modified Bach type Vertical Axis Wind Turbine. A two dimensional unsteady state analysis is carried out in this study. The unsteady Reynolds Averaged Navier-Stokes equation and the turbulence equation corresponding to SST k-ω turbulence model are solved using commercial software ANSYS FLUENT 13. A grid independence study is performed to choose optimum mesh elements. The simulation is carried out and performance parameters like power coefficient and torque coefficient are calculated. The results are compared with the available experimental data for validation purpose and these matched with numerical values. An improved performance of around 37% Cp is observed for modified Bach type over simple Savonius rotor. Moreover, a brief analysis of flow behaviour over the rotor is studied.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

551-557

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] U.K. Saha, M. Jaya Rajkumar, On the performance analysis of Savonius rotor withtwisted blades, Journal of renewable energy (2006)1776–1788.

DOI: 10.1016/j.renene.2005.08.030

Google Scholar

[2] Keum Soo Jeon, Jun Ik Jeong, Jae-Kyung Pan, Ki-Wahn Ryu, Effects of end plates with various shapes and sizes on helical Savonius wind turbines, Journal of renewable energy 79 (2014)167-176.

DOI: 10.1016/j.renene.2014.11.035

Google Scholar

[3] J. Kumbernuss, J. Chen, H.X. Yang, L. Lu. Investigation into the relationship of the overlap ratio and shift angle of double stage three bladed vertical axis wind turbine (VAWT), 107-108 (2012) 57-75.

DOI: 10.1016/j.jweia.2012.03.021

Google Scholar

[4] Sukanta Roy, Ujjwal K. Saha. Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine, Applied Energy 137 (2015) 117–125.

DOI: 10.1016/j.apenergy.2014.10.022

Google Scholar

[5] M.A. Kamoji, S.B. Kedare, S.V. Prabhu. Performance tests on helical Savonius rotors, Renewable Energy 34 (2009) 521–529.

DOI: 10.1016/j.renene.2008.06.002

Google Scholar

[6] A. Damak, Z. Driss, M.S. Abid. Experimental investigation of helical Savonius rotor with a twist of 180, Renewable Energy 52 (2013) 136-142.

DOI: 10.1016/j.renene.2012.10.043

Google Scholar

[7] Sukanta Roy, Ujjwal K. Saha. Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine, Applied Energy 137 (2015) 117–125.

DOI: 10.1016/j.apenergy.2014.10.022

Google Scholar

[8] Khandakar Niaz Morshed, Mosfequr Rahman, Gustavo Molina and Mahbub Ahmed, Wind tunnel testing and numerical simulation on aerodynamic performance of a three-bladed Savonius wind turbine, International Journal of Energy and Environmental Engineering 4 (2013).

DOI: 10.1186/2251-6832-4-18

Google Scholar

[9] C. R. Patel, V. K. Patel, S. V. Prabhu, T. I. Eldho, Investigation of overlap Ratio for Savonius type vertical axis hydro turbine, International Journal of Soft Computing and Engineering 3(2) ( 2013).

Google Scholar

[10] Giovanni Gerardo Muscoloa, Rezia Molfinob, From Savonius to Bronzinus: a comparison among vertical wind turbines, Energy Procedia 50 ( 2014 ) 10-18.

DOI: 10.1016/j.egypro.2014.06.002

Google Scholar

[11] Mohammed Shaheen, Mohamed El-Sayed, Shaaban Abdallah, Numerical study of two-bucket Savonius wind turbine cluster, J. Wind Eng. Ind. Aerodyn. 137 (2015) 78–89.

DOI: 10.1016/j.jweia.2014.12.002

Google Scholar

[12] Jae-Hoon Lee, Young-Tae Lee, Hee-Chang Lim. Effect of twist angle on the performance of Savonius wind turbine. Renewable Energy 89 (2016) 231-244.

DOI: 10.1016/j.renene.2015.12.012

Google Scholar

[13] M. Goodarzi , R. Keimanesh, M. Goodarzi, R. Keimanesh, Numerical analysis on overall performance of Savonius turbines adjacent to a natural draft cooling tower. Energy Conversion and Management 99 (2015) 41–49.

DOI: 10.1016/j.enconman.2015.04.027

Google Scholar

[14] M.H. Mohamed, G. Janiga, E. Pap, D. Thévenin. Optimization of Savonius turbines using an obstacle shielding the returning blade. RenewableEnergy 35 (2010) 2618-2626.

DOI: 10.1016/j.renene.2010.04.007

Google Scholar

[15] David Afungchui, Baddreddinne Kamoun , Ali Helali , Abdellatif Ben Djemaa, The unsteady pressure field and the aerodynamic performances of a Savonius rotor based on the discrete vortex method, Renewable Energy 35 (2010) 307–313.

DOI: 10.1016/j.renene.2009.04.034

Google Scholar

[16] João Vicente Akwa, Gilmar Alves da Silva Júnior, Adriane Prisco Petry, Discussion on the verification of the overlap ratio influence on performance coefficients of a Savonius wind rotor using computational fluid dynamics, Renewable Energy 38 (2012).

DOI: 10.1016/j.renene.2011.07.013

Google Scholar

[17] M.H. Nasef, W.A. El-Askary, A.A. AbdEL-hamid, H.E. Gad, Evaluation of Savonius rotor performance: Static and dynamic studies. J. Wind Eng. Ind. Aerodyn. 123 (2013)1-11.

DOI: 10.1016/j.jweia.2013.09.009

Google Scholar

[18] U.K. Saha, S. Thotla, D. Maity, Optimum design configuration of Savonius rotorthrough wind tunnel experiments. Journal of Wind Engineering and Industrial Aerodynamics, 96 (2008) 1359– 1375.

DOI: 10.1016/j.jweia.2008.03.005

Google Scholar

[19] Konrad Kacprzak, GrzegorzLiskiewicz, Krzysztof Sobczak, Numerical investigation of conventional and modified Savonius wind turbines, Renewable Energy 60 (2013) 578-585.

DOI: 10.1016/j.renene.2013.06.009

Google Scholar

[20] W.A. El-Askary, M.H. Nasef, A.A. Abd EL-hamid, H.E. Gad, Harvesting wind energy for improving performance of Savonius rotor, J. Wind Eng. Ind. Aerodyn. 139 (2015) 8–15.

DOI: 10.1016/j.jweia.2015.01.003

Google Scholar

[21] Y.X. Yao, Z.P. Tang, X.W. Wang, Design based on a parametric analysis of a drag driven VAWT with a tower cowling, J. Wind Eng. Ind. Aerodyn. 116 (2013) 32–39.

DOI: 10.1016/j.jweia.2012.11.001

Google Scholar

[22] S. MCtavish, D. Feszty, T. Sankar. Steady and rotating computational fluid dynamics simulations of a novel vertical axis wind turbine for small-scale power generation, Renewable Energy 41 (2012) 171-179.

DOI: 10.1016/j.renene.2011.10.018

Google Scholar

[23] Tong Zhou, Dietmar Rempfer. Numerical study of detailed flow field and performance of Savonius wind turbines, Renewable Energy 51 (2013) 373-381.

DOI: 10.1016/j.renene.2012.09.046

Google Scholar