[1]
Han, Park, J.S., and Lie, C.K., Heat Transfer and Pressure Drop in Blade Cooling Channels with Turbulence Promoters., Texas A&M University (prepared for NASA CR-3837), (1984).
Google Scholar
[2]
John, P., Haji-Sheik, Numerical Study of Film Cooling in Supersonic Flow, AIAA, Vol. 30, (1992).
Google Scholar
[3]
Chen, C. L., Chakravarthy S. R., Numerical Investigation of SeparatedNozzle Flows, AIAA, Vol. 32, (1994).
Google Scholar
[4]
Hagemann, G., Krtille, G., Numerical Flow field Analysis of the Next Generation Vulcan Nozzle, Journal of Propulsion and Power, Vol. 12, No. 4, July-August (1996).
Google Scholar
[5]
Takita, K., Masuya,G., Effects of Combustion & Shock Impingement on Supersonic Film Cooling by Hydrogen, AIAA Journal, Vol. 38, No. 10, October (2000).
DOI: 10.2514/2.843
Google Scholar
[6]
Gross, A., Weiland,C., Numerical Simulation of Separated Cold Gas Nozzle Flows, JPP, Vol. 20, No. 3.
Google Scholar
[7]
Cai, G., Fang, J., and Liu,M., Performance prediction and optimization for liquid rocket engine nozzle, Aerospace Science and Technology 11(2007) 155162.
DOI: 10.1016/j.ast.2006.07.002
Google Scholar
[8]
E Martelli, F Nasuti, M Onofri, Numerical analysis of film cooling in advanced rocket nozzles , AIAA journal 47 (11), 2558-2566, (2009).
DOI: 10.2514/1.39217
Google Scholar
[9]
Kercher, D.M., A Film-Cooling CFD Bibliography: 1971-1996, Int. J. Rotating Mach, Vol. 4.
Google Scholar
[10]
Burdet, A., Abhari, R. S., (2005) The Modelling of Film Cooling - Part 11: Model for use in 3D CFD., Proceedings of the ASME Turbo Expo 2005, GT2005-68780, Reno, Nevada, USA.
DOI: 10.1115/gt2005-68780
Google Scholar
[11]
Grissom, W.M., Wierum, F.A., Liquid spray cooling of a heated surface, International Journal of Heat and MassTransfer 24: 261-271, (1981).
DOI: 10.1016/0017-9310(81)90034-x
Google Scholar
[12]
Baheri, S., AlaviTabrizi, P., and Ali Jubran, B., Film Cooling Effectiveness from Trenched Shaped and Compound Holes, HEAT AND MASS TRANSFER 44(8): 989-998 · JUNE (2008).
DOI: 10.1007/s00231-007-0341-9
Google Scholar
[13]
McGrath, E. L., Leylek, J. H., and Buck, F. A., 'Film Cooling on aModern HP Turbine Blade Part IV: Compound Angle Shaped Holes, ', IGTITurbo Expo, Amsterdam, Paper GT-2002-30521, (2002).
DOI: 10.1115/gt2002-30521
Google Scholar
[14]
Sen, B., Schmidt, D.L., and Bogard, D. G., Film Cooling with Compound Angle Holes: Heat Transfer, ASME Journal of Turbomachinery, Vol. 118, No. 4, 1996, pp.801-807.
DOI: 10.1115/1.2840937
Google Scholar
[15]
Sivrioglu, M., An Analysis of the Effects of Pressure Gradient and StreamlineCurvature on Film cooling Effectiveness, Wärme-und Stofftibertragung, Vol. 26, 1991, p.103–107.
DOI: 10.1007/bf01590243
Google Scholar
[16]
Cho, H. H., Rhee, D. H., & Kim, B. G., Enhancement of Film Cooling Performance Using a Shaped Film Cooling Hole with Compound Angle Injection, JSME, Vol. 44, 2001, pp.99-107.
DOI: 10.1299/jsmeb.44.99
Google Scholar
[17]
Brittingham R.A., Leylek J.H., A detailed analysis of film cooling physics: Part IV—compound-angleinjection with shaped holes, ASME J. Turbomachinery 122 (2002) 133-145.
DOI: 10.1115/1.555419
Google Scholar
[18]
Goldstein, R.J., 1971. Film Cooling" In Advancement in Heat Transfer, Academic Press, Vol. 7, 321-379.
Google Scholar
[19]
Sargison, J. E., Guo, S. M., Oldfield, M. L.G., Lock, G. D., and Rawlinson, A. J., Flow Visualization of a Converging Slot-Hole Film Cooling Geometry, ASME GT 2002-30177.
DOI: 10.1115/gt2002-30177
Google Scholar
[20]
Lemmon, C., Kohli, A., and Thole, K. A., Formation of Counter-Rotating Vortices in Film-Cooling Flows, International GT and Aeroengine Congress, Indiana, 99-GT-161, (1999).
Google Scholar
[21]
Jayanti,S., Hewitt, G.F., Hydrodynamis and heat transfer in wavy annular gas-liquid flow: a computational fluid dynamics, Int. J. of Heat & Mass Transfer, 40 (10) (1997), p.2445–2460.
DOI: 10.1016/s0017-9310(96)00288-8
Google Scholar
[22]
Shine, S.R., Sunil Kumar, S., &Suresh, B.N., Numerical study of wave disturbance in liquid cooling film, Propulsion and Power Research 2013; 2(2): 107 – 118.
DOI: 10.1016/j.jppr.2013.04.008
Google Scholar
[23]
Han,H., Gabriel,K., A numerical study of entrainment mechanism in axisymmetric annular gas-liquid flow, Journal of Fluids Engineering, 129 (3) (2007), p.293–301.
DOI: 10.1115/1.2427078
Google Scholar
[24]
Liu,Y., Cui,J., Li,W., A two-phase, two-component model for vertical upward gas-liquid annular flow, International Journal of Heat and Fluid Flow 32 (4) (2011) 796 –804.
DOI: 10.1016/j.ijheatfluidflow.2011.05.003
Google Scholar
[25]
Raach, H., Extension of k- ε models for a turbulent falling film, HMT, 48, 1231 – 34.
Google Scholar
[26]
Cioncolini, A., Thome, J.R., Entrained liquid fraction prediction in adiabatic and evaporating annular two- phase flow, Nuclear Engineering and Design 243 (2012) 200–213.
DOI: 10.1016/j.nucengdes.2011.11.014
Google Scholar
[27]
Yang, H., Investigations of flow and film cooling on turbine blade edge regions, Dissertation, Texas University (2006).
Google Scholar
[28]
Zhang H.W., Tao W.Q., He,Y.L., Zhang, W., Numerical study of liquid film cooling in a rocketcombustion chamber, International J. of Heat and Mass Transfer 49 (2006) 349–358.
DOI: 10.1016/j.ijheatmasstransfer.2005.06.017
Google Scholar
[29]
Sargison, J. E., Development of a novel film cooling hole geometry, 2001 Dissertation, Univ. of Oxford.
Google Scholar
[30]
McGovern K.T., Leylek, J.H., A Detailed Analysis of Film Cooling Physics: Part IICompound-Angle Injection with Cylindrical Holes, ASME J. of Turbomachinery 122, 113-121, (2000).
DOI: 10.1115/1.555434
Google Scholar
[31]
Stoll, J. and Straub, J., Film Cooling and Heat Transfer in Nozzles, ASME Vol. 110, 1998, p.57–65.
Google Scholar
[32]
Zhang, H., Tao, W., He, Y. and Zhang, W., Numerical Study of Liquid Film Cooling in a Rocket Combustion Chamber, Int. J. of Heat and Mass Transfer, Vol. 49, 2006, p.349–358.
DOI: 10.1016/j.ijheatmasstransfer.2005.06.017
Google Scholar
[33]
Cruz, C. A., Marshall, A. and Trouvé, A, Large-Eddy Simulation of Film Cooling Through a 2D Slot, AIAA Paper 2006-4710, July (2006).
DOI: 10.2514/6.2006-4710
Google Scholar
[34]
Matesanz, A., Velazquez, A., and Rodriguez, M., Numerical Simulation of Slot Film Cooling in Convergent-Divergent Nozzles, AIAA Paper 93-1977, April1993.
DOI: 10.2514/6.1993-1977
Google Scholar
[35]
Cruz, C. A., Experimental and Numerical Characterization of Turbulent Slot Film Cooling, Ph.D. Thesis, Dept. of Aerospace Engg, University of Maryland, College Park, MD, (2008).
Google Scholar
[36]
Tyagi, M. and Acharya, S., Large Eddy Simulation of Film Cooling Flow from an Inclined Cylindrical Jet, Transactions of ASME J. of Turbomachinery, Vol. 125, 2003, p.734–742.
DOI: 10.1115/1.1625397
Google Scholar
[37]
Lavrich, P. and Chiapetta, L., An Investigation of Jet in a Cross Flow for Turbine Film Cooling Applications, United Technologies Research Center; Report No. 90-04, (1990).
Google Scholar
[38]
Guo, X., Schröder, W. and Meinke, M., Large-eddy Simulations of Film Cooling Flows, Computers and Fluids, Vol. 35, 2006, No. 6, p.587–606.
DOI: 10.1016/j.compfluid.2005.02.007
Google Scholar
[39]
Roy, S., Kapadia, S. and Heidmann J. D., Film Cooling Analysis Using DES Turbulence Model, ASME Turbo Expo, Paper GT 2003-38140, June (2003).
DOI: 10.1115/gt2003-38140
Google Scholar
[40]
Kapadia, S., Roy, S., and Heidmann J. D., First Hybrid Turbulence Modeling for Turbine Blade Cooling, J. of Thermophysics and Heat Transfer, Vol. 18, No. 4, 2004, p.154–156.
DOI: 10.2514/1.2824
Google Scholar
[41]
Martini, P., Schulz, A., Bauer, H. –J, and Whitney, C. F., Detached Eddy Simulation of Film Cooling Performance on the Trailing Edge Cutback of Gas Turbine Airfoils, ASME J of Turbo., Vol. 128, 292–299.
DOI: 10.1115/1.2137739
Google Scholar
[42]
Sundaram, N., Thole, K. A., 2009. Journal of Turbomachinery. 131: 041007.
Google Scholar
[43]
Asghar, F.H., Hyder, M.J., 2011. Energy Conversion and Management. 52: 329.
Google Scholar
[44]
Sang, W.L., Jong, R.B., Dae, S.L., 1998. KSME International Journal. 12: 301.
Google Scholar