[1]
J.L. Pons, Rehabilitation exoskeletal robotics. The promise of an emerging field, IEEE Eng. Med. Biol. Mag. 29 (3) (2010) 57–63.
DOI: 10.1109/memb.2010.936548
Google Scholar
[2]
A.M. Dollar, H. Herr, Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art, IEEE Trans. Robot. 24 (1) (2008) 144–158.
DOI: 10.1109/tro.2008.915453
Google Scholar
[3]
Bohannon, R.W., Andrews, A.W., 1998. Relationships between impairments in strength of limb muscle actions following stroke. Perceptual and Motor Skills 87, 1327–1330.
DOI: 10.2466/pms.1998.87.3f.1327
Google Scholar
[4]
Hsu, A.L., Tang, P.F., Jan, M.H., 2003. Analysis of impairments influencing gait velocity and asymmetry of hemiplegic patients after mild to moderate stroke. Archives of Physical Medicine and Rehabilitation 84, 1185–1193.
DOI: 10.1016/s0003-9993(03)00030-3
Google Scholar
[5]
Kerrigan, D.C., Todd, M.K., Della Croce, U., Lipsitz, L.A., Collins, J.J., 1998. Biomechanical gait alterations independent of speed in the healthy elderly: evidence for specific limiting impairments. Archives of Physical Medicine and Rehabilitation 79, 317–322.
DOI: 10.1016/s0003-9993(98)90013-2
Google Scholar
[6]
Wade, D.T., Wood, V.A., Heller, A., Maggs, J., Langton Hewer, R., 1987. Walking after stroke. Measurement and recovery over the first 3 months. Scandinavian Journal of Rehabilitation Medicine 19, 25–30.
DOI: 10.2340/1650197787192530
Google Scholar
[7]
S. Jezernik, G. Colombo, M. Morari, Automatic gait-pattern adaptation algorithms for rehabilitation with a 4-dof robotic orthosis, IEEE Trans. Robot. Automat. 20 (3) (2004) 574–582.
DOI: 10.1109/tra.2004.825515
Google Scholar
[8]
J. Veneman, R. Kruidhof, E.E. Hekman, R. Ekkelenkamp, E.H. Van Asseldonk, H. van der Kooij, Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation, IEEE Trans. Neural Syst. Rehabil. Eng. (2007) 379–386.
DOI: 10.1109/tnsre.2007.903919
Google Scholar
[9]
S.K. Banala, S.K. Agrawal, J.P. Scholz, Active leg exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients, in: IEEE 10th International Conference on Rehabilitation Robotics, Noordwlijk, Netherlands, (2007).
DOI: 10.1109/icorr.2007.4428456
Google Scholar
[10]
Sanz-Merodio. D, M. Cestari, J.C. Arevalo, X. Carrillo, E. Garcia, Generation and control of adaptive gaits in lower-limb exoskeletons for motion assistance, Adv. Robot. 28 (2014) 329–338.
DOI: 10.1080/01691864.2013.867284
Google Scholar
[11]
A. Esquenazi., M. Talaty, A. Packel, M. Saulino, The rewalk powered exoskeleton to restore ambulatory function to individuals with thoraciclevel motor-complete spinal cord injury, Am. J. Phys. Med. Rehabil. 91 (2012) 911–921.
DOI: 10.1097/phm.0b013e318269d9a3
Google Scholar
[12]
K.A. Strausser, H. Kazerooni, The development and testing of a human machine interface for a mobile medical exoskeleton, in: Intelligent Robots and Systems, IROS, 2011 IEEE/RSJ International Conference on, IEEE, 2011, p.4911–4916.
DOI: 10.1109/iros.2011.6095025
Google Scholar
[13]
H. Kazerooni, R. Steger, The Berkeley lower extremity exoskeleton, J. Dyn. Syst. Meas. Contr. 128 (2006) 14–25.
Google Scholar
[14]
E. Guizzo, H. Goldstein, The rise of the body bots [robotic exoskeletons], IEEE Spectrum 42 (2005) 50–56.
DOI: 10.1109/mspec.2005.1515961
Google Scholar
[15]
C.J. Walsh, K. Endo, H. Herr, A quasi-passive leg exoskeleton for load-carrying augmentation, Int. J. Humanoid Rob. 4 (2007) 487–506.
DOI: 10.1142/s0219843607001126
Google Scholar
[16]
Y. Sankai, HAL: hybrid assistive limb based on Cybernics, in: Robotics Research, Springer, 2011, p.25–34.
DOI: 10.1007/978-3-642-14743-2_3
Google Scholar
[17]
Information on http: /www. rusnauka. com/31_PRNT_2008/Tecnic/36223. doc. htm.
Google Scholar
[18]
Information on Anthropometric Data, university of Rhode Island, Department of Electrical, computer and biomedical engineering.
Google Scholar