[1]
A. Arcari, R.D. Vita, N.E. Dowling. Mean stress relaxation during cyclic straining of high strength aluminum alloys. International Journal of Fatigue. 2009, 31: 1742-1750.
DOI: 10.1016/j.ijfatigue.2009.01.021
Google Scholar
[2]
S.P. Zhu, H.Z. Huang, L.P. He, Y. Liu, Z. Wang. A generalized energy-based fatigue–creep damage parameter for life prediction of turbine disk alloys. Engineering Fracture Mechanics, 2012, 90: 89-100.
DOI: 10.1016/j.engfracmech.2012.04.021
Google Scholar
[3]
A. Niesłony, M. Böhm. Mean stress effect correction using constant stress ratio S–N curves. International Journal of Fatigue, 2013, 52: 49-56.
DOI: 10.1016/j.ijfatigue.2013.02.019
Google Scholar
[4]
N. Apetre, A. Arcari, N. Dowling, N. Iyyer, N. Phan. Probabilistic model of mean stress effects in strain-life fatigue. Procedia Engineering, 2015, 114: 538-545.
DOI: 10.1016/j.proeng.2015.08.103
Google Scholar
[5]
Y. Wang, G.J. Yu, G. Chen, X. Chen. Effects of pre-strain on uniaxial ratcheting and fatigue failure of Z2CN18. 10 austenitic stainless steel, International Journal of Fatigue, 2013, 52: 106-113.
DOI: 10.1016/j.ijfatigue.2013.03.007
Google Scholar
[6]
Z. Fan, X. Chen, L. Chen, J. Jiang. Fatigue–creep behavior of 1. 25Cr0. 5Mo steel at high temperature and its life prediction. International Journal of Fatigue, 2007, 29(6): 1174-1183.
DOI: 10.1016/j.ijfatigue.2006.07.008
Google Scholar
[7]
Z. Xia, D. Kujawski, F. Ellyin. Effect of mean stress and ratcheting strain on fatigue life of steel. Int. J. Fatigue, 1996, 18: 335-341.
DOI: 10.1016/0142-1123(96)00088-6
Google Scholar
[8]
V.D. Palma, A. Tomasella, F. Frendo, C.M. Sonsino, T. Melz. Experimental analysis of the ratcheting behavior of linear flow split flanges of HC340LA. International Journal of Fatigue, 2014, 64: 121-130.
DOI: 10.1016/j.ijfatigue.2014.01.028
Google Scholar
[9]
S.K. Paul, S. Sivaprasad, S. Dhar, S. Tarafder. Ratcheting and low cycle fatigue behavior of SA333 steel and their life prediction. Journal of Nuclear Materials, 2010, 401: 17-24.
DOI: 10.1016/j.jnucmat.2010.03.014
Google Scholar
[10]
Y.C. Lin, X.M. Chen, G. Chen. Uniaxial ratcheting and low-cycle fatigue failure behaviors of AZ91D magnesium alloy under cyclic tension deformation. Journal of Alloys and Compounds, 2011, 509: 6838-6843.
DOI: 10.1016/j.jallcom.2011.03.129
Google Scholar
[11]
C. -B. Lim, K.S. Kim, J.B. Seong. Ratcheting and fatigue behavior of a copper alloy under uniaxial cyclic loading with mean stress. International Journal of Fatigue, 2009, 31: 501-507.
DOI: 10.1016/j.ijfatigue.2008.04.008
Google Scholar
[12]
S.J. Park, K.S. Kim, H.S. Kim. Ratcheting behavior and mean stress considerations in uniaxial low-cycle fatigue of Inconel 718 at 649°C. Fatigue & Fracture of Engineering Materials & Structures, 2007, 11: 1076-1083.
DOI: 10.1111/j.1460-2695.2007.01177.x
Google Scholar
[13]
G. Breitbach, A. Schmidt-Plutka, F. Schubert, H. Nickel. Investigations of creep ratcheting on thick-walled tubes. Nuclear Engineering and Design, 1994, 151: 337-345.
DOI: 10.1016/0029-5493(94)90179-1
Google Scholar
[14]
S. Date, H. Ishikawa, T. Otani, Y. Takahashi. Effect of ratcheting deformation on fatigue and creep-fatigue life of 316FR stainless steel. Nuclear Engineering and Design, 2008, 238: 336-346.
DOI: 10.1016/j.nucengdes.2006.09.009
Google Scholar
[15]
M. Ando, N. Isobe, K. Kikuchi, Y. Enuma. Effect of ratchet strain on fatigue and creep-fatigue strength of Mod. 9Cr-1Mo steel. Nuclear Engineering and Design, 2012, 247: 66-75.
DOI: 10.1016/j.nucengdes.2012.02.017
Google Scholar
[16]
J. Peng, C.Y. Zhou, Q. Dai, X.H. He, X.C. Yu. Fatigue and ratcheting behaviors of CP-Ti at room temperature. Materials Science & Engineering A, 2014, 590: 329-337.
DOI: 10.1016/j.msea.2013.10.063
Google Scholar
[17]
T. Goswami. Low cycle fatigue life prediction—a new model. International Journal of Fatigue, 1997, 19: 109-115.
DOI: 10.1016/s0142-1123(96)00065-5
Google Scholar