Mean Stress and Ratcheting Corrections in Fatigue Life Prediction of Metals

Article Preview

Abstract:

Considering the effects of mean stress, the progressive accumulation inelastic strain occurs in engineering components under the direction of mean stress, it is simply known as ratcheting. Based on the ductility exhaustion theory, a new model is proposed to account for the effects of mean stress and ratcheting on the component fatigue life. The capability and accuracy of the proposed model are compared with those of Walker, Xia-Ellyin, Goswami, GDP and Peng models. A comparison between the model prediction and tested life is found to be quite satisfactory in the cases of 9 sets of experimental data available in the literature under different loading conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-61

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Arcari, R.D. Vita, N.E. Dowling. Mean stress relaxation during cyclic straining of high strength aluminum alloys. International Journal of Fatigue. 2009, 31: 1742-1750.

DOI: 10.1016/j.ijfatigue.2009.01.021

Google Scholar

[2] S.P. Zhu, H.Z. Huang, L.P. He, Y. Liu, Z. Wang. A generalized energy-based fatigue–creep damage parameter for life prediction of turbine disk alloys. Engineering Fracture Mechanics, 2012, 90: 89-100.

DOI: 10.1016/j.engfracmech.2012.04.021

Google Scholar

[3] A. Niesłony, M. Böhm. Mean stress effect correction using constant stress ratio S–N curves. International Journal of Fatigue, 2013, 52: 49-56.

DOI: 10.1016/j.ijfatigue.2013.02.019

Google Scholar

[4] N. Apetre, A. Arcari, N. Dowling, N. Iyyer, N. Phan. Probabilistic model of mean stress effects in strain-life fatigue. Procedia Engineering, 2015, 114: 538-545.

DOI: 10.1016/j.proeng.2015.08.103

Google Scholar

[5] Y. Wang, G.J. Yu, G. Chen, X. Chen. Effects of pre-strain on uniaxial ratcheting and fatigue failure of Z2CN18. 10 austenitic stainless steel, International Journal of Fatigue, 2013, 52: 106-113.

DOI: 10.1016/j.ijfatigue.2013.03.007

Google Scholar

[6] Z. Fan, X. Chen, L. Chen, J. Jiang. Fatigue–creep behavior of 1. 25Cr0. 5Mo steel at high temperature and its life prediction. International Journal of Fatigue, 2007, 29(6): 1174-1183.

DOI: 10.1016/j.ijfatigue.2006.07.008

Google Scholar

[7] Z. Xia, D. Kujawski, F. Ellyin. Effect of mean stress and ratcheting strain on fatigue life of steel. Int. J. Fatigue, 1996, 18: 335-341.

DOI: 10.1016/0142-1123(96)00088-6

Google Scholar

[8] V.D. Palma, A. Tomasella, F. Frendo, C.M. Sonsino, T. Melz. Experimental analysis of the ratcheting behavior of linear flow split flanges of HC340LA. International Journal of Fatigue, 2014, 64: 121-130.

DOI: 10.1016/j.ijfatigue.2014.01.028

Google Scholar

[9] S.K. Paul, S. Sivaprasad, S. Dhar, S. Tarafder. Ratcheting and low cycle fatigue behavior of SA333 steel and their life prediction. Journal of Nuclear Materials, 2010, 401: 17-24.

DOI: 10.1016/j.jnucmat.2010.03.014

Google Scholar

[10] Y.C. Lin, X.M. Chen, G. Chen. Uniaxial ratcheting and low-cycle fatigue failure behaviors of AZ91D magnesium alloy under cyclic tension deformation. Journal of Alloys and Compounds, 2011, 509: 6838-6843.

DOI: 10.1016/j.jallcom.2011.03.129

Google Scholar

[11] C. -B. Lim, K.S. Kim, J.B. Seong. Ratcheting and fatigue behavior of a copper alloy under uniaxial cyclic loading with mean stress. International Journal of Fatigue, 2009, 31: 501-507.

DOI: 10.1016/j.ijfatigue.2008.04.008

Google Scholar

[12] S.J. Park, K.S. Kim, H.S. Kim. Ratcheting behavior and mean stress considerations in uniaxial low-cycle fatigue of Inconel 718 at 649°C. Fatigue & Fracture of Engineering Materials & Structures, 2007, 11: 1076-1083.

DOI: 10.1111/j.1460-2695.2007.01177.x

Google Scholar

[13] G. Breitbach, A. Schmidt-Plutka, F. Schubert, H. Nickel. Investigations of creep ratcheting on thick-walled tubes. Nuclear Engineering and Design, 1994, 151: 337-345.

DOI: 10.1016/0029-5493(94)90179-1

Google Scholar

[14] S. Date, H. Ishikawa, T. Otani, Y. Takahashi. Effect of ratcheting deformation on fatigue and creep-fatigue life of 316FR stainless steel. Nuclear Engineering and Design, 2008, 238: 336-346.

DOI: 10.1016/j.nucengdes.2006.09.009

Google Scholar

[15] M. Ando, N. Isobe, K. Kikuchi, Y. Enuma. Effect of ratchet strain on fatigue and creep-fatigue strength of Mod. 9Cr-1Mo steel. Nuclear Engineering and Design, 2012, 247: 66-75.

DOI: 10.1016/j.nucengdes.2012.02.017

Google Scholar

[16] J. Peng, C.Y. Zhou, Q. Dai, X.H. He, X.C. Yu. Fatigue and ratcheting behaviors of CP-Ti at room temperature. Materials Science & Engineering A, 2014, 590: 329-337.

DOI: 10.1016/j.msea.2013.10.063

Google Scholar

[17] T. Goswami. Low cycle fatigue life prediction—a new model. International Journal of Fatigue, 1997, 19: 109-115.

DOI: 10.1016/s0142-1123(96)00065-5

Google Scholar