A Modified Cumulative Damage Model for Fatigue Life Prediction under Variable Amplitude Loadings

Article Preview

Abstract:

To evaluate the fatigue damage accumulation and predict the residual life of components at different stress levels, this paper proposed a modified cumulative damage model based on the strain energy density parameter. Noting that mean stress and load interaction under uniaxial fatigue loading exhibit significant effects on fatigue damage accumulation and life prediction. According to this, a new model based on damaged stress model which considers the effects of mean stress and load interaction was presented in this paper. The proposed model was verified by using four experimental data sets of aluminium alloys and steels. The experimental results are compared with those of the Miner’s rule, damaged stress model (DSM) and damaged energy model (DEM). Results show that the proposed model agrees better with the experimental observations than others.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

62-66

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Miner MA. Cumulative damage in fatigue. J Appl Mech 1945, 67: A159-64.

Google Scholar

[2] G. Mesmacque, S. Garcia, A. Amrouche, C. Rubio-Gonzalez. Sequential law in multiaxial fatigue, a new damage indicator. International Journal of Fatigue, 2005, 27: 461-467.

DOI: 10.1016/j.ijfatigue.2004.08.005

Google Scholar

[3] A. Aid, A. Amrouche, B.A. Bachir, M. Benguediab, Fatigue life prediction under variable loading based on a new damage model, Materials & Design, 2011, 32 (1): 183-191.

DOI: 10.1016/j.matdes.2010.06.010

Google Scholar

[4] S. Garcia, A. Amrouche, G. Mesmacque, X. Decoopman, C. Rubio. Fatigue damage accumulation of cold expanded hole in aluminum alloys subjected to block loading. International Journal of Fatigue, 2005, 27: 1347-1353.

DOI: 10.1016/j.ijfatigue.2005.06.040

Google Scholar

[5] G. Mesmacque, S. Garcia, A. Amrouche, C. Rubio-Gonzalez, Sequential law in multiaxial fatigue, a new damage indicator, International Journal of Fatigue, 2005, 27: 461-467.

DOI: 10.1016/j.ijfatigue.2004.08.005

Google Scholar

[6] A. Aid, J. Chalet, A. Amrouche, G. Mesmacque, M. Benguediab A new damage indicator: from blocks loading to random loading, in: Proceedings of the Fatigue Design Conference, Paris, France16–18 November, (2005).

Google Scholar

[7] A. Aid, Z. Semari, A. Amrouche, G. Mesmacque, M. Benguediab. Application for GS61 Spheroidal ghraphit cast-iron loaded by tortion and plane bending, Journal of Theoretical and Applied Mechanics, 2008, 38: 101-112.

Google Scholar

[8] A. Aid, M. Bendouba, L. Aminallah, A. Amrouche, N. Benseddiq, M. Benguediab. An equivalent stress process for fatigue life estimation under multiaxial loadings based a new non-linear damage model, Materials Science and Engineering: A, 2012, 538(15): 20-27.

DOI: 10.1016/j.msea.2011.12.105

Google Scholar

[9] A. Djebli, A. Aid, M. Bendouba, A. Amrouche, M. Benguediab, N. Benseddiq. A non-linear energy model of fatigue damage accumulation and its verification for Al-2024 aluminum alloy. International Journal of Non-Linear Mechanics, 2013, 51: 145-151.

DOI: 10.1016/j.ijnonlinmec.2013.01.007

Google Scholar

[10] A. Ince, G. Glinka. A modification of Morrow and Smith–Watson–Topper mean stress correction models. Fatigue & Fracture of Engineering Materials & Structures, (2011).

DOI: 10.1111/j.1460-2695.2011.01577.x

Google Scholar

[11] S. Taheri, L. Vincent, J-C Le-roux. A new model for fatigue damage accumulation of austenitic stainless steel under variable amplitude loading. Procedia Engineering 2013, 575 – 586.

DOI: 10.1016/j.proeng.2013.12.109

Google Scholar

[12] J. Xu, D. G. Shang, G. Q. Sun, H. Chen, and E. T. Liu, Fatigue life prediction for GH4169 superalloy under multiaxial variable amplitude loading, Journal of Beijing University of Technology, 2012, 38(10): 1462-1466.

Google Scholar

[13] A. M. Freudenthal, R. A. Heller. On stress interaction in fatigue and cumulative damage rule". Journal of the Aerospace Science, 1959, 26(7): 431-442.

DOI: 10.2514/8.8131

Google Scholar

[14] H. T. Corten, T. J. Dolon. Cumulative fatigue damage. In Proceedings of the International Conference on Fatigue of Metals, 1956, pp.235-246.

Google Scholar

[15] H. Gao, H.Z. Huang, S.P. Zhu, Y. Li, R. Yuan. A Modified Nonlinear Damage Accumulation Model for Fatigue Life Prediction Considering Load Interaction Effects. The Scientific World Journal, (2014).

DOI: 10.1155/2014/164378

Google Scholar

[16] Z. Lv, H.Z. Huang, S.P. Zhu, H. Gao, F. Zuo. A modified nonlinear fatigue damage accumulation model. International Journal of Damage Mechanics, 2015, 24(2): 168-181.

DOI: 10.1177/1056789514524075

Google Scholar

[17] D.G. Pavlou, A phenomenological fatigue damage accumulation rule based on hardness increasing, for the 2024-T42 aluminum, Engineering Structures, 2002, 24: 1363-1368.

DOI: 10.1016/s0141-0296(02)00055-x

Google Scholar

[18] Krouse J, Moore A. Application of a double linear damage rule to cumulative fatigue. ASTM STP 1967, 415: 384-412.

Google Scholar

[19] V. Dattoma, S. Giancane, R. Nobile, F.W. Panella. Fatigue life prediction under variable loading based on a new non-linear continuum damage mechanics model. International Journal of Fatigue, 2006, 28: 89-95.

DOI: 10.1016/j.ijfatigue.2005.05.001

Google Scholar

[20] DG Shang, WX Yao. Study on nonlinear continuous damage cumulative model for uniaxial fatigue. Acta Aeronautica et Astronautica Sinica, 1998, 19: 647-656 (in Chinese).

Google Scholar