Biodesulfurization of Dibenzothiophene by a Newly Isolated Agrobacterium tumefaciens LSU20

Article Preview

Abstract:

Organic sulfur compound of fossil fuel are too resistant to be removed by the conventional desulfurization processes. This study aimed to investigate the best growth conditions of Agrobacterium tumefaciens strain LSU20 on desulfurized of dibenzothiophene (DBT) compound in the n-tetradecane as model of oil. The experiments were performed with the medium two-phase system, aqueous phase: mineral salt sulfur free (MSSF) medium and the oil phase: n-tetradecane containing 200 ppm of DBT in the ratio of oil/water (1: 5). The culture of LSU20 that has been aged 4 days (OD660 5) of 0.1 ml inoculated in a test tube containing 5 mL of MSSF medium and 1 ml model of petroleum, grown at temperature variations incubation as follows: 33°C, 37°C, 41°C, 45°C, and 49°C; variations in the initial pH of medium: pH 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, and 8.0; and variations of carbon sources such as glucose, sucrose, glycerol and citric acid. The experiments were conducted using a water bath shaker at 150 rpm for 96 hours of incubation. The results showed that the highest rate of degradation of DBT by LSU20 occurs at a temperature of 37°C, media pH of 7 and glucose as the carbon source, ie with the growth rate reached 0.91 (OD660) and DBT compounds degraded until 76.9% (w/v).

You have full access to the following eBook

Info:

* - Corresponding Author

[1] R. Huirache, B. Pawelec, E. Rivera, R. Nava J. Espino, JLG. Fierro, Comparison of the morphology and HDS activity of ternary Co–Mo–W catalysts supported on Pmodified SBA-15 and SBA-16s ubstrates. Appl. Catal. B. Environ., 92: 168–84, (2009).

DOI: 10.1016/j.apcatb.2009.07.012

Google Scholar

[2] I.B.W. Gunam, Y. Yaku, M. Hirano, K. Yamamura, F. Tomita, T. Sone, K. Asano. Biodesulfurization of alkylated forms of dibenzothiophene and benzothiophene by Sphingomonas subarctica T7b. J. Biosci. Bioeng. 101, 322-327 (2006).

DOI: 10.1263/jbb.101.322

Google Scholar

[3] G. Mohebali, A.S. Ball, Biocatalytic desulfurization (BDS) of petrodiesel fuels. Microbiology 154, 2169–2183 (2008).

DOI: 10.1099/mic.0.2008/017608-0

Google Scholar

[4] G. Dube, P. Osifo, H. Rutto Preparation of bagasse ash/CaO/ ammonium acetate sorbent and modelling their desulphurization reaction. Clean Tech. Environ Policy 16: 891–900 (2014).

DOI: 10.1007/s10098-013-0681-8

Google Scholar

[5] N. Gupta, Biotechnology of desulfurization of diesel: Prospect and Chalanges. Appl. Microbiol. Bioethanol. 66: 356-366 (2004).

Google Scholar

[6] J.J. Kilbane, Microbial biocatalyst developments to upgrade fossil fuel. Curr. Opin. Biotechnol. 2006, 17: 305-314 (2006).

DOI: 10.1016/j.copbio.2006.04.005

Google Scholar

[7] M.M. Ramirez-Corredores, Biocatalyst in oil refining. Elseveir Ltd. AS. (2007).

Google Scholar

[8] W. Li, X. Jiang, Enhancement of bunker oil biodesulfurization by adding surfactant, World J Microbiol. Biotechnol. 29: 103–108 (2013).

DOI: 10.1007/s11274-012-1162-7

Google Scholar

[9] J.R. Gallagher, E.S. Olson, D.C. Stanley, Microbial desulphurization of dibenzothiophene: a sulfur-specific pathway. FEMS Microbiol. Lett. 107: 31–36 (1993).

DOI: 10.1111/j.1574-6968.1993.tb05999.x

Google Scholar

[10] S-K. Rhee, J.H. Chang, Y.K. Chang, H.N. Chang, Desulfurization of dibenzothiophene and diesel oils by a newly isolated Gordona strain, CYKS1. Appl Environ. Microbio. l 64, 2327–2331 (1998).

DOI: 10.1128/aem.64.6.2327-2331.1998

Google Scholar

[11] I.B.W. Gunam, IP.H. Prasetya, N.S. Antara, IW. Arnata, Y. Setiyo, IG.A.L. Triani, A.A.M.D. Anggreni, Biodesulfurization of dibenzothiophene by sulfur degrading bacteria isolated from Langkat North Sumatra, Proceedings 2; 1938-1943, (2015).

Google Scholar

[12] I.B.W. Gunam, K. Yamamura, IN. Sujaya, N.S. Antara, W.R. Ayanta, M. Tanaka, F. Tomita, T. Sone, K. Asanao. Biodesulfurization of Dibenzothiopena and Its Derivatives Using Resting and Imobilzed Cells of Sphingomonas Subarctica T7b. J. Microbiol. Biotechnol. 23(4): 473–482 (2013).

DOI: 10.4014/jmb.1207.07070

Google Scholar

[13] H.W. Araujo, Casullo, M.C. de Freitas Siva, Clarissa I Matos Lins. Oxidation of DBT by Serratia marcescens UCP 1549 formed biphenyl as final product. Biotechnol. Biofuel. 31-33 (2012).

DOI: 10.1186/1754-6834-5-33

Google Scholar

[14] T. Matsui, T. Onaka, K. Maharuhasi, Benzo[b]thiophene Desulfurization by G. rubropertinctus strain T08. Appl. Microbiol. Biotechnol. 57: 212-215 (2001).

DOI: 10.1007/s002530100735

Google Scholar

[15] L.M. Watkins, R. Rodriguez, D. Schneider, Purification and characterization of aromatic desulfinase, 2-(20 hydroxyphenyl) benzenesulfinate desulfinase. Ach. biochem. Biophys. 415: 14-23 (2003).

DOI: 10.1016/s0003-9861(03)00230-3

Google Scholar

[16] Reichmuth, S. David., J.L. Hittle, dan H.W. Blanch. Biodesulfurization of Dibenzothiopena in E. Coli is enhanced by expression of a Vibrio harveyi Oxidoreductase Gene. Biotechnol. Bioeng., 67: 72-79 (2000).

DOI: 10.1002/(sici)1097-0290(20000105)67:1<72::aid-bit8>3.0.co;2-c

Google Scholar

[17] K. Kirimura, K. Harada, H. Iwasawa, Identification and Functional Analysis of the Genes Encoding Dibenzothiophene-Desulfurizing Enzymes From Thermophilic Bacteria. Appl. Microbiol. Biotechnol., 65 (6): 703–713 (2004).

DOI: 10.1007/s00253-004-1652-0

Google Scholar

[18] T. Ohshiro, Y. Ishii, T. Matsubara, Dibenzothiophene Desulfurizing Enzymes From Moderately Thermophilic Bacterium Bacillus subtilis WU-S2B: Purification, Characterization and Overexpression. J. Biosci. Bioeng, 100(3): 266–273 (2005).

DOI: 10.1263/jbb.100.266

Google Scholar

[19] M.T. Madigan, J.M. Martinko, D.A. Stahl, D.P. Clark. Biology of Microorganism. Benjamin Cummings, Pearson Ltd. USA (2012).

Google Scholar

[20] Y.J. Kim, J.H. Chang, K.S. Cho, H. W Ryu, Y.K. Chang, A Physiological study on growth and dibenzotiofena (DBT) desulfurization characteristic of Gordona sp. CYKS1. Korean J. Chem. Eng., (2004).

DOI: 10.1007/bf02705433

Google Scholar

[21] N. Akhtar, M.A. Ghauri, M.A. Anwar, K. Akhtar, Analysis of the dibezothiophene metabolic pathway in isolated Rhodococcus spp. FEMS Microbiol. Lett. 301: 95–102 (2009).

DOI: 10.1111/j.1574-6968.2009.01797.x

Google Scholar

[22] D.J. Monticello, Biodesulfrization and the upgrading of petroleum distillates. Curr. Opin. Biotechnol. 11: 540-546 (2000).

Google Scholar

[23] B.R. Funke, G.J. Tortora, C.L. Case, Microbiology : An Introduction, Pearson Publish. USA, (2013).

Google Scholar

[24] Y. Ishii, J. Konishi, T. Onaka. Thermophilic Carbon-Bond-Targeted Biodesulfurization. Appl. Enviroment. Microbiol., 8: 3164-3169 (1997).

DOI: 10.1128/aem.63.8.3164-3169.1997

Google Scholar

[25] D. White, C. Susan D. Sutton, The genus Sphingomonas: physiology and ecology. Current Biology. Oakland, USA (1996).

Google Scholar

[26] P. Xu, J. Feng, B. Yu, Recent Developments in Biodesulfurization of Fossil Fuels. Adv Biochem Engin/Biotechnol, 113: 255-274 (2009).

Google Scholar