UV Irradiation Effect on the Surface KTaO3 Crystals

Article Preview

Abstract:

The perovskite oxides property are wide band-gap semiconductors and are sensitive to visible light but opaque. In this paper, we are interested in the resistance change of insulating KTaO3 crystals could decrease as much as 3-4 orders of magnitudes under exposure to focused sunlight. But, these resistances under ambient pressure changed back quickly after light was off. And the resistance changed in a similar way under exposure to synchrotron light but the increase resistance rate was much slower under vacuum condition. However, the large increase resistance rate by increasing the oxygen pressure. From the ARPES study, the change in resistance occurred due to the oxygen vacancy induced by the exposure to ultraviolet light. These oxygen vacancies induce two-dimensional electron gas at the surface KTaO3. This indicates that the KTaO3 could be used as a light sensing device.

You have full access to the following eBook

Info:

Periodical:

Pages:

121-125

Citation:

Online since:

October 2016

Export:

Share:

Citation:

* - Corresponding Author

[1] H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Emergent phenomena at oxide interfaces, Nature Materials 11 (2012) 103-113.

DOI: 10.1038/nmat3223

Google Scholar

[2] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Magnetic control of ferroelectric Polarization, Nature Materials 426 (2003) 55-58.

DOI: 10.1038/nature02018

Google Scholar

[3] K. H. Ahn, X. W. Wu, K. Liu, and C. L. Chien, Magnetic properties and colossal magnetoresistance of La(Ca)MnO3 materials doped with Fe, Physical Review B 26 (21) (1996) 299-302.

Google Scholar

[4] J. G. Bednorz and K. A. Muller, Perovskite-type oxides: The new approach to high-Tc superconductivity, Reviews Modern Physics 60 (1988) 585-600.

Google Scholar

[5] G. Kim, D. Mazumdar, and A. Gupta, Nanoscale electroresistance properties of all-oxide magneto-electric tunnel junction with ultra-thin barium titanate barrier, Applied Physics Letters 102 (2013) 052908.

DOI: 10.1063/1.4791699

Google Scholar

[6] W. Meevasana, P. D. C. King, R. H. He, S-K. Mo, M. Hashimoto, A. Tamai, P. Songsiriritthigul, F. Baumberger and Z-X. Shen, Creation and control of a two-dimensional electron liquid at the bare SrTiO3 surface, Nature Materials 10 (2011) 114-118.

DOI: 10.1038/nmat2943

Google Scholar

[7] P. D. C. King, R. H. He, T. Eknapakul, P. Buaphet, S. -K. Mo, Y. Kaneko, S. Harashima, Y. Hikita, M. S. Bahramy, C. Bell, Z. Hussain, Y. Tokura, Z. -X. Shen, H. Y. Hwang, F. Baumberger and W. Meevasana, Subband structure of a two-dimensional electron gas formed at the polar surface of the strong spin-orbit perovskite KTaO3, Physics Review Letters 108 (2012).

DOI: 10.1103/physrevlett.108.117602

Google Scholar

[8] S. Suwanwong, T. Eknapakul, Y. Rattanachai, C. Masingboon, S. Rattanasuporn, R. Phatthanakun, H. Nakajima, P.D.C. King, S.K. Hodak and W. Meevasana, The dynamics of ultraviolet-induced oxygen vacancy at the surface of insulating SrTiO3 (001), Applied Surface Science 355 (2015).

DOI: 10.1016/j.apsusc.2015.06.171

Google Scholar

[9] Y. Aiura, I. Hase, H. Bando, T. Yasue, T. Saitoh, and D.S. Dessau, Photoemission study of the metallic state of lightly electron-doped SrTiO3, Surface Science 515 (2002) 61-74.

DOI: 10.1016/s0039-6028(02)01784-3

Google Scholar

[10] A. Ohtomo, and H. Y. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface, Nature Materials 427 (2004) 423-426.

DOI: 10.1038/nature02308

Google Scholar

[11] C. Masingboon, T. Eknapakul, S. Suwanwong, P. Buaphet, H. Nakajima, S. K. Mo, P. Thongbai, P. D. C. King, S. Maensiri and W. Meevasana, Anomalous change in dielectric constant of CaCu3Ti4O12 under violet-to-ultraviolet irradiation, Applied Physics Letters 102 (2013).

DOI: 10.1063/1.4807741

Google Scholar

[12] P. Jaiban, S. Suwanwong, O. Namsar, A. Watcharapasorn and W. Meevasana, Simultaneous tuning of the dielectric property and photo-induced conductivity in ferroelectric Ba0. 7Ca0. 3TiO3 via La doping, Materials Letters 147 (2015) 29–33.

DOI: 10.1016/j.matlet.2015.01.114

Google Scholar