Excited-State Energy Eigenvalue Evaluation of the Quantum Mechanical Potential V(x)=½2x2+μx3 via Numerical Shooting Method

Article Preview

Abstract:

The paper deals with eigenvalues excited-state energy eigenvalues and wave-function of a particle under harmonics oscillator asymmetric potential using numerical shooting method. The numerical shooting method is generally regarded as one of the most efficient methods that give very accurate results because it integrates the Schrodinger equation directly, though in the numerical sense. If the value of parameter μ is small the energy eigenvalues of single particle will large and the parameter μ large the energy eigenvalues of single particle will small.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] G.A. Dobrovolsky and R.S. Tutik, J. Phys. A: Math. Gen., 33 6593, (2000).

Google Scholar

[2] M.I. Jaghob, Eur. Phys. J. A. 27, 99., (2006).

Google Scholar

[3] E.Z. Liverts and V.B. Mandelzweig, Ann. Phys. 322, 2211., (2007).

Google Scholar

[4] N. Saad, et al., J. Phys. A: Math. Gen. 39, 7745., (2006).

Google Scholar

[5] Z. Cao, Phys. Rev. A 63, 054103-054106 (2001).

Google Scholar

[6] A. Hutem and C. Sricheewin, Eur. J. Phys. 29 577-588, (2008).

Google Scholar

[7] He Ying, et al., Chin. Phys. B19, 040306., (2010).

Google Scholar

[8] S. Boonchui and A. Hutem, J Math Chem. 50, 2103-2119, (2012).

Google Scholar

[9] S. Boonchui and A. Hutem, J Math Chem. 50, 1582., (2012).

Google Scholar