Efficient and Noise Reduced Design of Axial Fans Considering Psychoacoustic Evaluation Criteria

Article Preview

Abstract:

Axial fans are the largest group of blowers and thus have a significant impact on their environment: Their demand for electrical power and the generation of a significant noise emission, have a negative impact on the environment.In this work the improvement of efficiency and reduction of noise emission are subject of the investigations. Several types of low-pressure axial fans are subject of this investigation. Measurements of pressure rise, efficiency and acoustic behavior will be presented for different blade geometries. The modifications of forward- and backward-skewed blades are compared to a unskewed blade geometry. The forward-skewed configurations show an improvement on the hydraulic properties, the efficiency and reduce the noise emission whilst the backward-skewed configurations improve the acoustic behavior at low flow rates with flow detachment occurring. Besides an acoustic quantification of the noise emission using the sound power level, psychoacoustic methods like loudness and sharpness were used.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

181-187

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Bommes, J. Fricke, and R. Grundmann. Ventilatoren. Vulkan, (2003).

Google Scholar

[2] C. Pfleiderer and H. Petermann, editors. Strömungsmaschinen, volume 7. Springer, (2005).

Google Scholar

[3] T. Carolus and R. Starzmann. An aerodynamic design methodology for low pressure axial fans with integrated airfoil polar prediction. In Proceedings of ASME Turbo Expo 2011, (2011).

DOI: 10.1115/gt2011-45243

Google Scholar

[4] T. Carolus. Ventilatoren - Aerodynamischer Entwurf, Schallvorhersage, Konstruktion, volume 3. Springer Vieweg, (2013).

DOI: 10.1007/978-3-8348-2472-1

Google Scholar

[5] T. Carolus and M. Beiler. Skewed blades in low pressure fans: a survey of noise reduction mechanisms. AIAA-97-1591, pages 47-53, (1997).

DOI: 10.2514/6.1997-1591

Google Scholar

[6] D. F. Scharpf and T. J. Mueller. An experimental investigation of the sources of propeller noise due to the ingestion of turbulence at low speeds. Experiments in Fluids, 18: 277-287, (1995).

DOI: 10.1007/bf00195098

Google Scholar

[7] R. J. Minniti, W. K. Blake, and T. J. Mueller. Determination of inflow distortions by interpreting aeroacoustic response of a propeller fan. AIAA Paper 98-2286, (1998).

DOI: 10.2514/6.1998-2286

Google Scholar

[8] S. Magne, S. Moreau, and A. Berry. Subharmonic tonal noise from backflow vortices radiated by a low-speed ring fan in uniform inlet flow. Journal of the Acoustical Society of America, 137(1): 228-237, January (2015).

DOI: 10.1121/1.4904489

Google Scholar

[9] T. Zhu, D. Lallier-Daniels, M. Sanjose, S. Moreau, and T. Carolus. Rotating coherent flow structures as a source for narrowband tip clearance noise from axial fan. AIAA Paper 2016-2822, (2016).

DOI: 10.2514/6.2016-2822

Google Scholar

[10] S. Moreau and M. Sanjose. Sub-harmonic broadband humps and tip noise in low-speed ring fans. Journal of the Acoustical Society of America, 139(1): 118-127, (2016).

DOI: 10.1121/1.4939493

Google Scholar

[11] S. E. Wright. The acoustic spectrum of axial flow machines. Journal of Sound and Vibration, 45(2): 165-223, (1976).

DOI: 10.1016/0022-460x(76)90596-4

Google Scholar

[12] S. A. L. Glegg and C. Jochault. Broadband self-noise from a ducted fan. AIAA Journal, 36(8): 1387-1396, (1998).

DOI: 10.2514/3.13980

Google Scholar

[13] J. P. Wojno, T. J. Mueller, and W. K. Blake. Turbulence ingestion noise, part 2: Rotor aeroacoustic response to grid-generated turbulence. AIAA Journal, 40(1): 26-32, (2002).

DOI: 10.2514/2.1637

Google Scholar

[14] M. Roger. Reduction of airfoil turbulence-impingement noise by means of leading-edge serrations and/or porous materials. AIAA Paper 2013-2108, (2013).

DOI: 10.2514/6.2013-2108

Google Scholar

[15] M. Roger and S. Moreau. Broadband self-noise from loaded fan blades. AIAA, 42(3): 536-544, (2004).

DOI: 10.2514/1.9108

Google Scholar

[16] DIN 45631: Procedure for calculation loudness level and loudness, March (1991).

Google Scholar

[17] DIN 45692: Measurement technique for the simulation of the auditory sensation of sharpness, August (2009).

Google Scholar

[18] DIN 45681: Acoustics - Determination of tonal components of noise and determination of a tone adjustment for the assessment of noise immisions, March (2005).

Google Scholar

[19] J. Vad. Blade sweep applied to axial fan rotors of controlled vortex design. PhD thesis, Hungarian Academy of Sciences, Budapest, (2011).

Google Scholar

[20] F. Zenger, H. Gert, and S. Becker. Acoustic characterization of forward- and backward-skewed axial fans under increased inflow turbulence. In Proceedings of 22nd AIAA/CEAS Aeroacoustics Conference, Lyon, France, AIAA Paper 2016-2943, (2016).

DOI: 10.2514/6.2016-2943

Google Scholar

[21] F. Zenger, C. Junger, M. Kaltenbacher, and S. Becker. A benchmark case for aerodynamics and aeroacoustics of a low pressure axial fan. SAE Technical Paper 2016-01-1805, (2016).

DOI: 10.4271/2016-01-1805

Google Scholar

[22] International Organization for Standardization. ISO 5801: 2007 Industrial Fans - Performance Testing Using Standardized Airways.

Google Scholar

[23] A. Corsini and F. Rispoli. Using sweep to extend the stall-free operational range in axial fan rotors. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 2004, 218, (2004).

DOI: 10.1243/095765004323049869

Google Scholar

[24] H. -U. Meixner. Vergleichende LDA-Messungen an ungesichelten und gesichelten Axialventilatoren. PhD thesis, Universität Karlsruhe, (1995).

Google Scholar

[25] M.G. Beiler. Untersuchung der dreidimensionalen Strömung durch Axialventilatoren mit gekrümmten Schaufeln. PhD thesis, Universität Siegen, (1996).

Google Scholar

[26] F. A. Agboola and T. Wright. The effects of axial fan noise control by blade sweep on the radial component of velocity. In AIAA-99-1862, (1999).

DOI: 10.2514/6.1999-1862

Google Scholar

[27] J. Hurault, S. Kouidri, F. Bakir, and R. Rey. Experimental and numerical study of sweep effect on three-dimensional flow downstream of axial flow fans. Flow Measurement and Instrumentation, 21: 155-165, (2010).

DOI: 10.1016/j.flowmeasinst.2010.02.003

Google Scholar