Energy Efficient Manufacturing of Power Electronics Substrates through Selective Laser Melting Technology

Article Preview

Abstract:

In view of rising energy prices, high-energy consumption, and the associated environmental problems, in recent years the focus was shifted on the demand for energy and resource efficiency in the manufacturing sector. In the context of the project ‘PowerSLAM’ under Green Factory Bavaria Project, the feasibility of selective laser melting technology (SLM) for the production of ceramic circuit carriers is investigated. In this paper, an overview on the comparison of the state-of-the-art technologies with SLM technology is given in the perspective of energy and resource consumption. Parallelly the results of the investigations of SLM technology i.e. process feasibility and optimization for melting of copper based powders on ceramic substrates is summarized. The process parameters such as laser power, laser scan velocity and scan strategies are investigated. Based on the energy measurements, the process parameters are optimized accordingly for efficient process and overview on the resource and energy consumption is given. Demonstrators are built based on confined parameter combinations showing the process compatibility and the efficiencies are calculated accordingly. Here the approach bottom-up is considered to do the comprehensive process comparison and the energy efficiency value is considered in accessing the process and related energy efficiency.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

188-194

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] U. Völler, Curamik: Comparison of Silicon Nitride DBC and AMB Substrates for different applications in power electronics (Curamik),. IMAPS, Munich.

Google Scholar

[2] A. Pönicke, J. Schilm, G. Böhm, D. Schnee, Aktivlöten von Kupfer mit Aluminiumnitrid- und Siliziumnitridkeramik, In: Keramische Zeitschrift 2011, p.334–342, (2011).

Google Scholar

[3] J. Schulz-Harder: Process for the manufacture of metal-ceramic compound material in particular metal-ceramic substrates and metal-ceramic compound material especially metal-ceramic substrate manufactured according to this process,. Patent US7036711 B2.

DOI: 10.1201/9781420033977.ch11

Google Scholar

[4] J. Schulz-Harder: DCB Substrattechnologie. In: Jillek, W.; Keller, G. (Hrsg. ): Handbuch der Leiterplattentechnik. 1. Aufl. Saulgau/Württ : Leuze, 2003, p.733–760, (2003).

Google Scholar

[5] K. Bobzin: Oberflächentechnik für den Maschinenbau. Weinheim: Wiley-VCH, (2013).

Google Scholar

[6] H. Hofmann, J. Spindler, "Verfahren in der Beschichtungs- und Oberflächentechnik: Grundlagen - Vorbehandlung – Oberflächen-reaktionen - Schichtabscheidung – Strukturierung - Prüfung; mit 94 Tabellen und zahlreichen Beispielen. 2., aktualisierte Aufl. München, Wien: Fachbuchverl. Leipzig im Carl-Hanser-Verl, (2010).

DOI: 10.3139/9783446464988.007

Google Scholar

[7] B. Mussler, D. Brunner, Aluminiumnitrid. In: Kollenberg, W. (Hrsg. ): Technische Keramik: Grundlagen, Werkstoffe, Verfahrenstechnik. 2. Aufl. Essen : Vulkan-Verl, p.330–337, 2010.J. van der Geer, J.A.J. Hanraads, R.A. Lupton, The art of writing a scientific article, J. Sci. Commun. 163 (2000).

Google Scholar

[8] J. -P. Kruth, P. Mercelis, J. Van Vaerenbergh, L. Froyen, M. Rombouts, Binding mechanisms in selective laser sintering and selective laser melting, Rapid Prototyping Journal, vol. 11, no. 1, pp.26-36, (2005).

DOI: 10.1108/13552540510573365

Google Scholar

[9] J. -P. Kruth, G. Levy, F. Klocke, T.H.C. Childs, Consolidation phenomena in laser and powder-bed based layered manufacturing, CIRP Annals - Manufacturing Technology, vol. 56, no. 2, pp.730-759.

DOI: 10.1016/j.cirp.2007.10.004

Google Scholar

[10] A. Syed-Khaja, D. Schwarz and J. Franke, Advanced substrate and packaging concepts for compact system integration with additive manufacturing technologies for high temperature applications, CPMT Symposium Japan (ICSJ), 2015 IEEE, Kyoto, 2015, pp.156-159.

DOI: 10.1109/icsj.2015.7357402

Google Scholar

[11] A. Syed-Khaja, and J. Franke, Selective Laser Melting for Additive Manufacturing of High-temperature Ceramic Circuit Carriers, Proceedings of the IEEE Electronics Components and Technology Conference, 2016 IEEE, Las Vegas, 2016 (in press).

DOI: 10.1109/ectc.2016.279

Google Scholar

[12] S. Kreitlein, N. Eder, A. Syed-Khaja, J. Franke, Comprehensive Assessment of Energy Efficiency within the Production Process, World Academy of Science, Engineering and Technology International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering Vol: 9, No: 7, (2015).

Google Scholar