Feature Extraction and Classification of the Electric Current Signal of an Induction Motor for Condition Monitoring Purposes

Article Preview

Abstract:

A high availability of machines has always been important in production. One way to increase it is to avoid unscheduled production stops by detecting the onset of machine faults and to conduct preventative repairs. The detection part consists of the three steps signal acquisition, feature extraction and classification. This paper focuses on the last two steps through the example of an induction motor. Based on a publicly available motor current data set, features were extracted using the continuous wavelet transform. In the subsequent classification step eight different classification methods were compared with each other. It was found, that the accuracy of the classifiers varied significantly in a range from 20.6 % to 92.8 %. Moreover, the supportive vector machine, scoring an accuracy of 92.8 %, was the only classifier with an accuracy above 55.0 %.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

244-251

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. K. Jardine, D. Lin, D. Banjevic (2006). A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical systems and signal processing, 20(7), 1483-1510.

DOI: 10.1016/j.ymssp.2005.09.012

Google Scholar

[2] A. Siddique, G. S. Yadava, B. Singh, (2005). A review of stator fault monitoring techniques of induction motors. IEEE transactions on energy conversion, 20(1), 106-114.

DOI: 10.1109/tec.2004.837304

Google Scholar

[3] S. Nandi, H. A. Toliyat, X. Li, (2005). Condition monitoring and fault diagnosis of electrical motors-a review. IEEE transactions on energy conversion, 20(4), 719-729.

DOI: 10.1109/tec.2005.847955

Google Scholar

[4] W. T. Thomson, M.  Fenger, (2001). Current signature analysis to detect induction motor faults. IEEE Industry Applications Magazine, 7(4), 26-34.

DOI: 10.1109/2943.930988

Google Scholar

[5] C. Lessmeier, O. Enge-Rosenblatt, C. Bayer, D. Zimmer, Data Acquisition and Signal Analysis from Measured Motor Currents for Defect Detection in Electromechanical Drive Systems.

Google Scholar

[6] F. Gu, Y. Shao, N. Hu, A. Naid, A. D. Ball, (2011). Electrical motor current signal analysis using a modified bispectrum for fault diagnosis of downstream mechanical equipment. Mechanical Systems and Signal Processing, 25(1), 360-372.

DOI: 10.1016/j.ymssp.2010.07.004

Google Scholar

[7] A. Soualhi, G. Clerc, H. Razik, (2013). Detection and diagnosis of faults in induction motor using an improved artificial ant clustering technique. IEEE Transactions on Industrial Electronics, 60(9), 4053-4062.

DOI: 10.1109/tie.2012.2230598

Google Scholar

[8] M. Akar, I. Cankaya, (2012). Broken rotor bar fault detection in inverter-fed squirrel cage induction motors using stator current analysis and fuzzy logic. Turkish Journal of Electrical Engineering & Computer Sciences, 20(Sup. 1), 1077-1089.

DOI: 10.3906/elk-1102-1050

Google Scholar

[9] R. J. Povinelli, M. T. Johnson, A. C. Lindgren, J. Ye, (2004). Time series classification using Gaussian mixture models of reconstructed phase spaces. IEEE Transactions on Knowledge and Data Engineering, 16(6), 779-783.

DOI: 10.1109/tkde.2004.17

Google Scholar

[10] G. J. Janacek, A. J. Bagnall, M. Powell, (2005, May). A likelihood ratio distance measure for the similarity between the fourier transform of time series. In Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp.737-743.

DOI: 10.1007/11430919_85

Google Scholar

[11] M. Bator, A. Dicks, U. Mönks, V. Lohweg, (2014, October). Feature Extraction and Reduction Applied to Sensorless Drive Diagnosis. In Proceedings. 22. Workshop Computational Intelligence, Dortmund, 6. -7. Dezember 2012 (p.163.

Google Scholar

[12] C. D. Avanzo, V. Tarantino, P. Bisiacchi, G. Sparacino, (2009). A wavelet methodology for EEG time-frequency analysis in a time discrimination task. International Journal of Bioelectromagnetism, 11(4), 185-188.

Google Scholar

[13] D. Cvetkovic, E. D. Übeyli, I. Cosic, (2008). Wavelet transform feature extraction from human PPG, ECG, and EEG signal responses to ELF PEMF exposures: A pilot study. Digital signal processing, 18(5), 861-874.

DOI: 10.1016/j.dsp.2007.05.009

Google Scholar

[14] P. Ghorbanian, D. M. Devilbiss, A. J. Simon, A. Bernstein, T. Hess, H. Ashrafiuon, (2012, October). Continuous wavelet transform EEG features of Alzheimer's disease. In ASME 2012 5th Annual Dynamic Systems and Control Conference joint with the JSME 2012 11th Motion and Vibration Conference (pp.567-572.

DOI: 10.1109/embc.2012.6346579

Google Scholar

[15] E. Ayaz, A. Öztürk, S. Seker, B. R. Upadhyaya, (2009).

Google Scholar

[16] C. J. Li, J. Ma, (1997). Wavelet decomposition of vibrations for detection of bearing-localized defects. Ndt & E International, 30(3), 143-149.

DOI: 10.1016/s0963-8695(96)00052-7

Google Scholar

[17] S. Natarajan, P.G. Sreenath (2015). Wavelet analysis in fault diagnosis of spur bevel gearbox. International Research Journal of Coputer Science (2): 8-19.

Google Scholar

[18] W. J. Wang, P. D. McFadden, (1996). Application of wavelets to gearbox vibration signals for fault detection. Journal of sound and vibration, 192(5), 927-939.

DOI: 10.1006/jsvi.1996.0226

Google Scholar

[19] I. Ben-Gal, (2005). Outlier detection. In Data mining and knowledge discovery handbook (pp.131-146). Springer US.

DOI: 10.1007/0-387-25465-x_7

Google Scholar

[20] H. P. Kriegel, P. Kröger, A. Zimek, (2010). Outlier detection techniques. In Tutorial at the 16th ACM international conference on knowledge discovery and data Mining (SIGKDD), Washington, DC.

DOI: 10.1145/1401890.1401946

Google Scholar

[21] V. J. Hodge, J. Austin, (2004). A survey of outlier detection methodologies. Artificial intelligence review, 22(2), 85-126.

DOI: 10.1023/b:aire.0000045502.10941.a9

Google Scholar

[22] C. C. Aggarwal, (2015). Outlier analysis. In Data Mining (pp.237-263). Springer International Publishing.

Google Scholar

[23] K. L. Priddy, P. E.  Keller, (2005). Artificial neural networks: an introduction (Vol. 68). SPIE Press.

Google Scholar