[1]
A. K. Jardine, D. Lin, D. Banjevic (2006). A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical systems and signal processing, 20(7), 1483-1510.
DOI: 10.1016/j.ymssp.2005.09.012
Google Scholar
[2]
A. Siddique, G. S. Yadava, B. Singh, (2005). A review of stator fault monitoring techniques of induction motors. IEEE transactions on energy conversion, 20(1), 106-114.
DOI: 10.1109/tec.2004.837304
Google Scholar
[3]
S. Nandi, H. A. Toliyat, X. Li, (2005). Condition monitoring and fault diagnosis of electrical motors-a review. IEEE transactions on energy conversion, 20(4), 719-729.
DOI: 10.1109/tec.2005.847955
Google Scholar
[4]
W. T. Thomson, M. Fenger, (2001). Current signature analysis to detect induction motor faults. IEEE Industry Applications Magazine, 7(4), 26-34.
DOI: 10.1109/2943.930988
Google Scholar
[5]
C. Lessmeier, O. Enge-Rosenblatt, C. Bayer, D. Zimmer, Data Acquisition and Signal Analysis from Measured Motor Currents for Defect Detection in Electromechanical Drive Systems.
Google Scholar
[6]
F. Gu, Y. Shao, N. Hu, A. Naid, A. D. Ball, (2011). Electrical motor current signal analysis using a modified bispectrum for fault diagnosis of downstream mechanical equipment. Mechanical Systems and Signal Processing, 25(1), 360-372.
DOI: 10.1016/j.ymssp.2010.07.004
Google Scholar
[7]
A. Soualhi, G. Clerc, H. Razik, (2013). Detection and diagnosis of faults in induction motor using an improved artificial ant clustering technique. IEEE Transactions on Industrial Electronics, 60(9), 4053-4062.
DOI: 10.1109/tie.2012.2230598
Google Scholar
[8]
M. Akar, I. Cankaya, (2012). Broken rotor bar fault detection in inverter-fed squirrel cage induction motors using stator current analysis and fuzzy logic. Turkish Journal of Electrical Engineering & Computer Sciences, 20(Sup. 1), 1077-1089.
DOI: 10.3906/elk-1102-1050
Google Scholar
[9]
R. J. Povinelli, M. T. Johnson, A. C. Lindgren, J. Ye, (2004). Time series classification using Gaussian mixture models of reconstructed phase spaces. IEEE Transactions on Knowledge and Data Engineering, 16(6), 779-783.
DOI: 10.1109/tkde.2004.17
Google Scholar
[10]
G. J. Janacek, A. J. Bagnall, M. Powell, (2005, May). A likelihood ratio distance measure for the similarity between the fourier transform of time series. In Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp.737-743.
DOI: 10.1007/11430919_85
Google Scholar
[11]
M. Bator, A. Dicks, U. Mönks, V. Lohweg, (2014, October). Feature Extraction and Reduction Applied to Sensorless Drive Diagnosis. In Proceedings. 22. Workshop Computational Intelligence, Dortmund, 6. -7. Dezember 2012 (p.163.
Google Scholar
[12]
C. D. Avanzo, V. Tarantino, P. Bisiacchi, G. Sparacino, (2009). A wavelet methodology for EEG time-frequency analysis in a time discrimination task. International Journal of Bioelectromagnetism, 11(4), 185-188.
Google Scholar
[13]
D. Cvetkovic, E. D. Übeyli, I. Cosic, (2008). Wavelet transform feature extraction from human PPG, ECG, and EEG signal responses to ELF PEMF exposures: A pilot study. Digital signal processing, 18(5), 861-874.
DOI: 10.1016/j.dsp.2007.05.009
Google Scholar
[14]
P. Ghorbanian, D. M. Devilbiss, A. J. Simon, A. Bernstein, T. Hess, H. Ashrafiuon, (2012, October). Continuous wavelet transform EEG features of Alzheimer's disease. In ASME 2012 5th Annual Dynamic Systems and Control Conference joint with the JSME 2012 11th Motion and Vibration Conference (pp.567-572.
DOI: 10.1109/embc.2012.6346579
Google Scholar
[15]
E. Ayaz, A. Öztürk, S. Seker, B. R. Upadhyaya, (2009).
Google Scholar
[16]
C. J. Li, J. Ma, (1997). Wavelet decomposition of vibrations for detection of bearing-localized defects. Ndt & E International, 30(3), 143-149.
DOI: 10.1016/s0963-8695(96)00052-7
Google Scholar
[17]
S. Natarajan, P.G. Sreenath (2015). Wavelet analysis in fault diagnosis of spur bevel gearbox. International Research Journal of Coputer Science (2): 8-19.
Google Scholar
[18]
W. J. Wang, P. D. McFadden, (1996). Application of wavelets to gearbox vibration signals for fault detection. Journal of sound and vibration, 192(5), 927-939.
DOI: 10.1006/jsvi.1996.0226
Google Scholar
[19]
I. Ben-Gal, (2005). Outlier detection. In Data mining and knowledge discovery handbook (pp.131-146). Springer US.
DOI: 10.1007/0-387-25465-x_7
Google Scholar
[20]
H. P. Kriegel, P. Kröger, A. Zimek, (2010). Outlier detection techniques. In Tutorial at the 16th ACM international conference on knowledge discovery and data Mining (SIGKDD), Washington, DC.
DOI: 10.1145/1401890.1401946
Google Scholar
[21]
V. J. Hodge, J. Austin, (2004). A survey of outlier detection methodologies. Artificial intelligence review, 22(2), 85-126.
DOI: 10.1023/b:aire.0000045502.10941.a9
Google Scholar
[22]
C. C. Aggarwal, (2015). Outlier analysis. In Data Mining (pp.237-263). Springer International Publishing.
Google Scholar
[23]
K. L. Priddy, P. E. Keller, (2005). Artificial neural networks: an introduction (Vol. 68). SPIE Press.
Google Scholar